【动态规划】【二分查找】C++算法 466 统计重复个数

简介: 【动态规划】【二分查找】C++算法 466 统计重复个数

力扣:466 统计重复个数

定义 str = [s, n] 表示 str 由 n 个字符串 s 连接构成。

例如,str == [“abc”, 3] ==“abcabcabc” 。

如果可以从 s2 中删除某些字符使其变为 s1,则称字符串 s1 可以从字符串 s2 获得。

例如,根据定义,s1 = “abc” 可以从 s2 = “abdbec” 获得,仅需要删除加粗且用斜体标识的字符。

现在给你两个字符串 s1 和 s2 和两个整数 n1 和 n2 。由此构造得到两个字符串,其中 str1 = [s1, n1]、str2 = [s2, n2] 。

请你找出一个最大整数 m ,以满足 str = [str2, m] 可以从 str1 获得。

示例 1:

输入:s1 = “acb”, n1 = 4, s2 = “ab”, n2 = 2

输出:2

示例 2:

输入:s1 = “acb”, n1 = 1, s2 = “acb”, n2 = 1

输出:1

提示:

1 <= s1.length, s2.length <= 100

s1 和 s2 由小写英文字母组成

1 <= n1, n2 <= 106

动态规划

inxs[i] 记录s1中’a’+i的下标,升序。

分两步:

一,动态规划求dp[i]。dp[i]的含义是:s1[i,m_c1)+s1+s1… 包括s2的最短前缀长度。

dp[i]独立计算:

通过ch遍历s2, ii是s1对应的下标。如果s1不存在ch,则直接返回0。

如果inxs[ch-‘a’]存在大于等于ii的下标ij,则ch和ij对应。ii=ij+1。

如果不存在 ,iTurn ++ ii = inxs[ch-‘a’].front()+1

dp[i] = m_c1*iTurn + ii - i ;

这一步时间复杂度:O(nnlogn)

二,循环i,看[s1,n1]能否包括i个s2。

极端情况,时间复杂度O(108)

s1是100个a,n1是106。s2是’a’。

代码

核心代码

class Solution {
public:
  int getMaxRepetitions(string s1, int n1, string s2, int n2) {
    m_c1 = s1.length();
    m_c2 = s2.length();
    vector<int> inxs[26];
    for (int i = 0; i < m_c1; i++)
    {
      inxs[s1[i] - 'a'].emplace_back(i);
    }
    vector<int> dp(m_c1);//dp[i]的含义是:s1[i,m_c1)+s1+s1.... 包括s2的最短前缀长度
    for (int i = 0; i < m_c1; i++)
    {
      int ii = i;
      int iTrun = 0;
      for (int j = 0; j < m_c2; j++)
      {
        const auto& inx = inxs[s2[j] - 'a'];
        if (inx.empty())
        {//某个字符不存在
          return 0;
        }
        const auto it = std::lower_bound(inx.begin(), inx.end(), ii);
        if (inx.end() != it )
        {
          ii = *it+1;
        }
        else
        {
          ii = inx.front() + 1;
          iTrun++;
        }
      }
      dp[i] = m_c1 * iTrun + ii-i;
    }
    const int iHas = m_c1 * n1;
    int iNeed = 0;
    int inx = 0;
    for (int i = 0; ; i++)
    {
      iNeed += dp[inx];
      inx = (inx + dp[inx]) % m_c1;
      if (iNeed > iHas)
      {
        return i/n2;//i最多包括多少个s2
      }
    }
    return 0;
  }
  int m_c1,m_c2;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{
  string s1, s2; 
  int n1, n2;
  {
    Solution sln;
    s1 = "acb", n1 = 4, s2 = "ab", n2 = 2;
    auto res = sln.getMaxRepetitions(s1, n1, s2, n2);
    Assert(2, res);
  }
  {
    Solution sln;
    s1 = "acb", n1 = 1, s2 = "acb", n2 = 1;
    auto res = sln.getMaxRepetitions(s1, n2, s2, n2);
    Assert(1, res);
  }
}

优化

inx 取值范围[0,m_c1),所以m_c1+1次必定重复。 重复的部分只计算一次。

vBuf[inx],消耗了first个s2 时,s1消耗了second个字符 ,即s1消耗了second/m_c1个 ,还消耗了s1[0,second%m_c1)。

class Solution {
public:
  int getMaxRepetitions(string s1, int n1, string s2, int n2) {
    m_c1 = s1.length();
    m_c2 = s2.length();
    vector<int> inxs[26];
    for (int i = 0; i < m_c1; i++)
    {
      inxs[s1[i] - 'a'].emplace_back(i);
    }
    vector<int> dp(m_c1);//dp[i]的含义是:s1[i,m_c1)+s1+s1.... 包括s2的最短前缀长度
    for (int i = 0; i < m_c1; i++)
    {
      int ii = i;
      int iTrun = 0;
      for (int j = 0; j < m_c2; j++)
      {
        const auto& inx = inxs[s2[j] - 'a'];
        if (inx.empty())
        {//某个字符不存在
          return 0;
        }
        const auto it = std::lower_bound(inx.begin(), inx.end(), ii);
        if (inx.end() != it )
        {
          ii = *it+1;
        }
        else
        {
          ii = inx.front() + 1;
          iTrun++;
        }
      }
      dp[i] = m_c1 * iTrun + ii-i;
    }
    const int iTotal = m_c1 * n1;
    int iHas = 0;
    int inx = 0;
    vector<pair<int,int>> vBuf(m_c1,std::pair<int,int>(-1,-1));//消耗了first个s2 时,s1消耗了second个字符
    vBuf[0] = std::pair<int, int>(0, iHas);
    for (int i = 0; ; i++)
    {
      iHas += dp[inx];
      inx = (inx + dp[inx]) % m_c1;
      if (iHas > iTotal)
      {
        return i/n2;//i最多包括多少个s2
      }
      if (-1 == vBuf[inx].first)
      {
        vBuf[inx] = std::make_pair(i+1, iHas);
      }
      else
      {
        const int subHas =iHas -  vBuf[inx].second ;
        const int subI = (i+1) - vBuf[inx].first;
        i += (iTotal-iHas) / subHas * subI;
        iHas += (iTotal - iHas) / subHas*subHas;
      }
    }
    return 0;
  }
  int m_c1,m_c2;
};

再次优化:动态规划

dp[i][j]的含义是:s1[i,m_c1)+s1+s1… 包括s2[j,m_c2)的最短前缀长度

class Solution {
public:
  int getMaxRepetitions(string s1, int n1, string s2, int n2) {
    m_c1 = s1.length();
    m_c2 = s2.length();
    vector<vector<int>> dp(m_c1, vector<int>(m_c2));//dp[i][j]的含义是:s1[i,m_c1)+s1+s1.... 包括s2[j,m_c2)的最短前缀长度
    for (int j = m_c2 - 1; j >= 0; j--)
    {
      vector<int> inxs;
      for (int i = 0; i < m_c1; i++)
      {
        if (s2[j] == s1[i])
        {
          inxs.emplace_back(i);
        }
      }
      if (inxs.empty())
      {
        return 0;
      }
      for (int i = 0, k = 0; i < m_c1; i++)
      {
        while ((k < inxs.size()) && (inxs[k] < i))
        {
          k++;
        }
        dp[i][j] = (inxs.size() == k) ? (m_c1 - i + inxs.front() + 1) : (inxs[k] - i + 1);
        if (m_c2 - 1 == j)
        {
          continue;
        }
        const int inx = (i + dp[i][j]) % m_c1;
        dp[i][j] += dp[inx][j + 1];
      }
    }
    const int iTotal = m_c1 * n1;
    int iHas = 0;
    int inx = 0;
    vector<pair<int, int>> vBuf(m_c1, std::pair<int, int>(-1, -1));//消耗了first个s2 时,s1消耗了second个字符
    vBuf[0] = std::pair<int, int>(0, iHas);
    for (int i = 0; ; i++)
    {
      iHas += dp[inx][0];
      inx = (inx + dp[inx][0]) % m_c1;
      if (iHas > iTotal)
      {
        return i / n2;//i最多包括多少个s2
      }
      if (-1 == vBuf[inx].first)
      {
        vBuf[inx] = std::make_pair(i + 1, iHas);
      }
      else
      {
        const int subHas = iHas - vBuf[inx].second;
        const int subI = (i + 1) - vBuf[inx].first;
        i += (iTotal - iHas) / subHas * subI;
        iHas += (iTotal - iHas) / subHas * subHas;
      }
    }
    return 0;
  }
  int m_c1, m_c2;
};

2023年1月 版

class Solution {
public:
int getMaxRepetitions(string s1, int n1, string s2, int n2) {
int iCnt1 = 0, iCnt2 = 0, index = 0;
std::unordered_map> mIndexToCnt;
while (true)
{
for (const auto& ch : s1)
{
if (ch == s2[index])
{
index++;
if (s2.length() == index)
{
index = 0;
iCnt2++;
}
}
}
iCnt1++;
if (iCnt1 == n1)
{//已经匹配完毕
return iCnt2 / n2;
}
if (mIndexToCnt.count(index))
{//找到循环节
break;
}
else
{
mIndexToCnt[index] = { iCnt1, iCnt2 };
}
}
int iLoopCnt1 = iCnt1 - mIndexToCnt[index].first;
int iLoopCnt2 = iCnt2 - mIndexToCnt[index].second;
int iRet = iCnt2 + (n1 - iCnt1) / iLoopCnt1 * iLoopCnt2;
int iRemain = (n1 - iCnt1) % iLoopCnt1;
for (int i = 0; i < iRemain; i++)
{
for (const auto& ch : s1)
{
if (ch == s2[index])
{
index++;
if (s2.length() == index)
{
index = 0;
iRet++;
}
}
}
}
return iRet/n2;
}
};


扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 **C+

+17**

如无特殊说明,本算法用**C++**实现。

相关文章
|
1月前
|
存储 负载均衡 算法
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
64 15
|
1月前
|
存储 算法 数据处理
公司局域网管理中的哈希表查找优化 C++ 算法探究
在数字化办公环境中,公司局域网管理至关重要。哈希表作为一种高效的数据结构,通过哈希函数将关键值(如IP地址、账号)映射到数组索引,实现快速的插入、删除与查找操作。例如,在员工登录验证和设备信息管理中,哈希表能显著提升效率,避免传统线性查找的低效问题。本文以C++为例,展示了哈希表在局域网管理中的具体应用,包括设备MAC地址与IP分配的存储与查询,并探讨了优化哈希函数和扩容策略,确保网络管理高效准确。
|
10天前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
30 4
|
2月前
|
存储 监控 算法
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
39 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
|
3月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
114 2
|
2月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
3天前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
33 12
|
1月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
48 16
|
1月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
1月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。

热门文章

最新文章