【动态规划】【二分查找】C++算法 466 统计重复个数

简介: 【动态规划】【二分查找】C++算法 466 统计重复个数

力扣:466 统计重复个数

定义 str = [s, n] 表示 str 由 n 个字符串 s 连接构成。

例如,str == [“abc”, 3] ==“abcabcabc” 。

如果可以从 s2 中删除某些字符使其变为 s1,则称字符串 s1 可以从字符串 s2 获得。

例如,根据定义,s1 = “abc” 可以从 s2 = “abdbec” 获得,仅需要删除加粗且用斜体标识的字符。

现在给你两个字符串 s1 和 s2 和两个整数 n1 和 n2 。由此构造得到两个字符串,其中 str1 = [s1, n1]、str2 = [s2, n2] 。

请你找出一个最大整数 m ,以满足 str = [str2, m] 可以从 str1 获得。

示例 1:

输入:s1 = “acb”, n1 = 4, s2 = “ab”, n2 = 2

输出:2

示例 2:

输入:s1 = “acb”, n1 = 1, s2 = “acb”, n2 = 1

输出:1

提示:

1 <= s1.length, s2.length <= 100

s1 和 s2 由小写英文字母组成

1 <= n1, n2 <= 106

动态规划

inxs[i] 记录s1中’a’+i的下标,升序。

分两步:

一,动态规划求dp[i]。dp[i]的含义是:s1[i,m_c1)+s1+s1… 包括s2的最短前缀长度。

dp[i]独立计算:

通过ch遍历s2, ii是s1对应的下标。如果s1不存在ch,则直接返回0。

如果inxs[ch-‘a’]存在大于等于ii的下标ij,则ch和ij对应。ii=ij+1。

如果不存在 ,iTurn ++ ii = inxs[ch-‘a’].front()+1

dp[i] = m_c1*iTurn + ii - i ;

这一步时间复杂度:O(nnlogn)

二,循环i,看[s1,n1]能否包括i个s2。

极端情况,时间复杂度O(108)

s1是100个a,n1是106。s2是’a’。

代码

核心代码

class Solution {
public:
  int getMaxRepetitions(string s1, int n1, string s2, int n2) {
    m_c1 = s1.length();
    m_c2 = s2.length();
    vector<int> inxs[26];
    for (int i = 0; i < m_c1; i++)
    {
      inxs[s1[i] - 'a'].emplace_back(i);
    }
    vector<int> dp(m_c1);//dp[i]的含义是:s1[i,m_c1)+s1+s1.... 包括s2的最短前缀长度
    for (int i = 0; i < m_c1; i++)
    {
      int ii = i;
      int iTrun = 0;
      for (int j = 0; j < m_c2; j++)
      {
        const auto& inx = inxs[s2[j] - 'a'];
        if (inx.empty())
        {//某个字符不存在
          return 0;
        }
        const auto it = std::lower_bound(inx.begin(), inx.end(), ii);
        if (inx.end() != it )
        {
          ii = *it+1;
        }
        else
        {
          ii = inx.front() + 1;
          iTrun++;
        }
      }
      dp[i] = m_c1 * iTrun + ii-i;
    }
    const int iHas = m_c1 * n1;
    int iNeed = 0;
    int inx = 0;
    for (int i = 0; ; i++)
    {
      iNeed += dp[inx];
      inx = (inx + dp[inx]) % m_c1;
      if (iNeed > iHas)
      {
        return i/n2;//i最多包括多少个s2
      }
    }
    return 0;
  }
  int m_c1,m_c2;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{
  string s1, s2; 
  int n1, n2;
  {
    Solution sln;
    s1 = "acb", n1 = 4, s2 = "ab", n2 = 2;
    auto res = sln.getMaxRepetitions(s1, n1, s2, n2);
    Assert(2, res);
  }
  {
    Solution sln;
    s1 = "acb", n1 = 1, s2 = "acb", n2 = 1;
    auto res = sln.getMaxRepetitions(s1, n2, s2, n2);
    Assert(1, res);
  }
}

优化

inx 取值范围[0,m_c1),所以m_c1+1次必定重复。 重复的部分只计算一次。

vBuf[inx],消耗了first个s2 时,s1消耗了second个字符 ,即s1消耗了second/m_c1个 ,还消耗了s1[0,second%m_c1)。

class Solution {
public:
  int getMaxRepetitions(string s1, int n1, string s2, int n2) {
    m_c1 = s1.length();
    m_c2 = s2.length();
    vector<int> inxs[26];
    for (int i = 0; i < m_c1; i++)
    {
      inxs[s1[i] - 'a'].emplace_back(i);
    }
    vector<int> dp(m_c1);//dp[i]的含义是:s1[i,m_c1)+s1+s1.... 包括s2的最短前缀长度
    for (int i = 0; i < m_c1; i++)
    {
      int ii = i;
      int iTrun = 0;
      for (int j = 0; j < m_c2; j++)
      {
        const auto& inx = inxs[s2[j] - 'a'];
        if (inx.empty())
        {//某个字符不存在
          return 0;
        }
        const auto it = std::lower_bound(inx.begin(), inx.end(), ii);
        if (inx.end() != it )
        {
          ii = *it+1;
        }
        else
        {
          ii = inx.front() + 1;
          iTrun++;
        }
      }
      dp[i] = m_c1 * iTrun + ii-i;
    }
    const int iTotal = m_c1 * n1;
    int iHas = 0;
    int inx = 0;
    vector<pair<int,int>> vBuf(m_c1,std::pair<int,int>(-1,-1));//消耗了first个s2 时,s1消耗了second个字符
    vBuf[0] = std::pair<int, int>(0, iHas);
    for (int i = 0; ; i++)
    {
      iHas += dp[inx];
      inx = (inx + dp[inx]) % m_c1;
      if (iHas > iTotal)
      {
        return i/n2;//i最多包括多少个s2
      }
      if (-1 == vBuf[inx].first)
      {
        vBuf[inx] = std::make_pair(i+1, iHas);
      }
      else
      {
        const int subHas =iHas -  vBuf[inx].second ;
        const int subI = (i+1) - vBuf[inx].first;
        i += (iTotal-iHas) / subHas * subI;
        iHas += (iTotal - iHas) / subHas*subHas;
      }
    }
    return 0;
  }
  int m_c1,m_c2;
};

再次优化:动态规划

dp[i][j]的含义是:s1[i,m_c1)+s1+s1… 包括s2[j,m_c2)的最短前缀长度

class Solution {
public:
  int getMaxRepetitions(string s1, int n1, string s2, int n2) {
    m_c1 = s1.length();
    m_c2 = s2.length();
    vector<vector<int>> dp(m_c1, vector<int>(m_c2));//dp[i][j]的含义是:s1[i,m_c1)+s1+s1.... 包括s2[j,m_c2)的最短前缀长度
    for (int j = m_c2 - 1; j >= 0; j--)
    {
      vector<int> inxs;
      for (int i = 0; i < m_c1; i++)
      {
        if (s2[j] == s1[i])
        {
          inxs.emplace_back(i);
        }
      }
      if (inxs.empty())
      {
        return 0;
      }
      for (int i = 0, k = 0; i < m_c1; i++)
      {
        while ((k < inxs.size()) && (inxs[k] < i))
        {
          k++;
        }
        dp[i][j] = (inxs.size() == k) ? (m_c1 - i + inxs.front() + 1) : (inxs[k] - i + 1);
        if (m_c2 - 1 == j)
        {
          continue;
        }
        const int inx = (i + dp[i][j]) % m_c1;
        dp[i][j] += dp[inx][j + 1];
      }
    }
    const int iTotal = m_c1 * n1;
    int iHas = 0;
    int inx = 0;
    vector<pair<int, int>> vBuf(m_c1, std::pair<int, int>(-1, -1));//消耗了first个s2 时,s1消耗了second个字符
    vBuf[0] = std::pair<int, int>(0, iHas);
    for (int i = 0; ; i++)
    {
      iHas += dp[inx][0];
      inx = (inx + dp[inx][0]) % m_c1;
      if (iHas > iTotal)
      {
        return i / n2;//i最多包括多少个s2
      }
      if (-1 == vBuf[inx].first)
      {
        vBuf[inx] = std::make_pair(i + 1, iHas);
      }
      else
      {
        const int subHas = iHas - vBuf[inx].second;
        const int subI = (i + 1) - vBuf[inx].first;
        i += (iTotal - iHas) / subHas * subI;
        iHas += (iTotal - iHas) / subHas * subHas;
      }
    }
    return 0;
  }
  int m_c1, m_c2;
};

2023年1月 版

class Solution {
public:
int getMaxRepetitions(string s1, int n1, string s2, int n2) {
int iCnt1 = 0, iCnt2 = 0, index = 0;
std::unordered_map> mIndexToCnt;
while (true)
{
for (const auto& ch : s1)
{
if (ch == s2[index])
{
index++;
if (s2.length() == index)
{
index = 0;
iCnt2++;
}
}
}
iCnt1++;
if (iCnt1 == n1)
{//已经匹配完毕
return iCnt2 / n2;
}
if (mIndexToCnt.count(index))
{//找到循环节
break;
}
else
{
mIndexToCnt[index] = { iCnt1, iCnt2 };
}
}
int iLoopCnt1 = iCnt1 - mIndexToCnt[index].first;
int iLoopCnt2 = iCnt2 - mIndexToCnt[index].second;
int iRet = iCnt2 + (n1 - iCnt1) / iLoopCnt1 * iLoopCnt2;
int iRemain = (n1 - iCnt1) % iLoopCnt1;
for (int i = 0; i < iRemain; i++)
{
for (const auto& ch : s1)
{
if (ch == s2[index])
{
index++;
if (s2.length() == index)
{
index = 0;
iRet++;
}
}
}
}
return iRet/n2;
}
};


扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。

https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程

https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

测试环境

操作系统:win7 开发环境: VS2019 C++17

或者 操作系统:win10 开发环境: VS2022 **C+

+17**

如无特殊说明,本算法用**C++**实现。

相关文章
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
1天前
|
存储 监控 算法
员工屏幕监控系统之 C++ 图像差分算法
在现代企业管理中,员工屏幕监控系统至关重要。本文探讨了其中常用的图像差分算法,该算法通过比较相邻两帧图像的像素差异,检测屏幕内容变化,如应用程序切换等。文中提供了C++实现代码,并介绍了其在实时监控、异常行为检测和数据压缩等方面的应用,展示了其实现简单、效率高的特点。
27 15
|
1月前
|
负载均衡 算法 安全
探秘:基于 C++ 的局域网电脑控制软件自适应指令分发算法
在现代企业信息化架构中,局域网电脑控制软件如同“指挥官”,通过自适应指令分发算法动态调整指令发送节奏与数据量,确保不同性能的终端设备高效运行。基于C++语言,利用套接字实现稳定连接和线程同步管理,结合实时状态反馈,优化指令分发策略,提升整体管控效率,保障网络稳定,助力数字化办公。
52 19
|
1月前
|
存储 算法 C++
【C++数据结构——查找】二分查找(头歌实践教学平台习题)【合集】
二分查找的基本思想是:每次比较中间元素与目标元素的大小,如果中间元素等于目标元素,则查找成功;顺序表是线性表的一种存储方式,它用一组地址连续的存储单元依次存储线性表中的数据元素,使得逻辑上相邻的元素在物理存储位置上也相邻。第1次比较:查找范围R[0...10],比较元素R[5]:25。第1次比较:查找范围R[0...10],比较元素R[5]:25。第2次比较:查找范围R[0..4],比较元素R[2]:10。第3次比较:查找范围R[3...4],比较元素R[3]:15。,其中是顺序表中元素的个数。
137 68
【C++数据结构——查找】二分查找(头歌实践教学平台习题)【合集】
|
1月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
51 2
|
1月前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
2月前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
1天前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
1天前
|
安全 编译器 C语言
【C++篇】深度解析类与对象(中)
在上一篇博客中,我们学习了C++类与对象的基础内容。这一次,我们将深入探讨C++类的关键特性,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载、以及取地址运算符的重载。这些内容是理解面向对象编程的关键,也帮助我们更好地掌握C++内存管理的细节和编码的高级技巧。
|
1天前
|
存储 程序员 C语言
【C++篇】深度解析类与对象(上)
在C++中,类和对象是面向对象编程的基础组成部分。通过类,程序员可以对现实世界的实体进行模拟和抽象。类的基本概念包括成员变量、成员函数、访问控制等。本篇博客将介绍C++类与对象的基础知识,为后续学习打下良好的基础。