深度学习第5天:GAN生成对抗网络

简介: 深度学习第5天:GAN生成对抗网络

一、GAN

1.基本思想

想象一下,市面上有许多仿制的画作,人们为了辨别这些伪造的画,就会提高自己的鉴别技能,然后仿制者为了躲过鉴别又会提高自己的伪造技能,这样反反复复,两个群体的技能不断得到提高,这就是GAN的基本思想

2.用途

我们知道GAN的全名是生成对抗网络,那么它就是以生成为主要任务,所以可以用在这些方面

  • 生成虚拟数据集,当数据集数量不够时,我们可以用这种方法生成数据
  • 图像清晰化,可以将模糊图片清晰化
  • 文本到图像的生成,可以训练文生图模型

GAN的用途还有很多,可以在学习过程中慢慢发现

3.模型架构

GAN的主要结构包含一个生成器和一个判别器,我们先输入一堆杂乱数据(被称为噪声)给生成器,接着让判别器将生成器生成的数据与真实的数据作对比,看是否能判别出来,以此往复训练

二、具体任务与代码

1.任务介绍

相信很多人都对手写数字数据集不陌生了,那我们就训练一个生成手写数字的GAN,注意:本示例代码需要的运行时间较长,请在高配置设备上运行或者减少训练回合数

2.导入库函数

先导入必要的库函数,包括torch用来处理神经网络方面的任务,numpy用来处理数据

import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd.variable import Variable
from torchvision import transforms, datasets
import numpy as np

3.生成器与判别器

使用torch定义生成器与判别器的基本结构,这里由于任务比较简单,只用定义线性层就行,再给线性层添加相应的激活函数就行了

# 定义生成器(Generator)和判别器(Discriminator)的简单网络结构
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(100, 256),
            nn.ReLU(),
            nn.Linear(256, 784),
            nn.Tanh()
        )
    def forward(self, noise):
        return self.model(noise)
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(784, 256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )
    def forward(self, image):
        return self.model(image)

4.预处理

这一部分定义了模型参数,加载了数据集,定义了损失函数与优化器,这些是神经网络训练时的一些基本参数

# 定义一些参数
batch_size = 100
learning_rate = 0.0002
epochs = 500
# 加载MNIST数据集
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])
mnist_data = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
data_loader = torch.utils.data.DataLoader(dataset=mnist_data, batch_size=batch_size, shuffle=True)
# 初始化生成器、判别器和优化器
generator = Generator()
discriminator = Discriminator()
optimizer_G = optim.Adam(generator.parameters(), lr=learning_rate)
optimizer_D = optim.Adam(discriminator.parameters(), lr=learning_rate)
# 损失函数
criterion = nn.BCELoss()

5.模型训练

这一部分开始训练模型,通过反向传播逐步调整模型的参数,注意模型训练的过程,观察生成器和判别器分别是怎么在训练中互相作用不断提高的

# 训练 GAN
for epoch in range(epochs):
    for data, _ in data_loader:
        data = data.view(data.size(0), -1)
        real_data = Variable(data)
        target_real = Variable(torch.ones(data.size(0), 1))
        target_fake = Variable(torch.zeros(data.size(0), 1))
        # 训练判别器
        optimizer_D.zero_grad()
        output_real = discriminator(real_data)
        loss_real = criterion(output_real, target_real)
        loss_real.backward()
        noise = Variable(torch.randn(data.size(0), 100))
        fake_data = generator(noise)
        output_fake = discriminator(fake_data.detach())
        loss_fake = criterion(output_fake, target_fake)
        loss_fake.backward()
        optimizer_D.step()
        # 训练生成器
        optimizer_G.zero_grad()
        output = discriminator(fake_data)
        loss_G = criterion(output, target_real)
        loss_G.backward()
        optimizer_G.step()
    print(f'Epoch [{epoch+1}/{epochs}], Loss D: {loss_real.item()+loss_fake.item()}, Loss G: {loss_G.item()}')

6.图片生成

这一部分再一次随机生成了一些噪声,并把他们传入生成器生成图片,其中包含一些格式转化过程,再通过matplotlib绘图库显示结果

# 生成一些图片
num_samples = 16
noise = Variable(torch.randn(num_samples, 100))
generated_samples = generator(noise)
generated_samples = generated_samples.view(num_samples, 1, 28, 28).detach()
import matplotlib.pyplot as plt
import torchvision.utils as vutils
plt.figure(figsize=(8, 8))
plt.axis("off")
plt.title("Generated Images")
plt.imshow(
    np.transpose(
        vutils.make_grid(generated_samples, nrow=4, padding=2, normalize=True).cpu(), (1, 2, 0)
    )
)
plt.show()

7.不同训练轮次的结果对比

感谢阅读,觉得有用的话就订阅下《深度学习》专栏吧,有错误也欢迎指出

相关文章
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
9天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
6天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
29 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
22天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
37 7
|
23天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络背后的魔法
【10月更文挑战第22天】本文将带你走进深度学习的世界,揭示神经网络背后的神秘面纱。我们将一起探讨深度学习的基本原理,以及如何通过编程实现一个简单的神经网络。无论你是初学者还是有一定基础的学习者,这篇文章都将为你提供有价值的信息和启示。让我们一起踏上这段奇妙的旅程吧!
|
23天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
67 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
24天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
10天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
26 0
|
12天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
23 0
|
13天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。