自然语言处理第2天:自然语言处理词语编码

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 自然语言处理第2天:自然语言处理词语编码

一、自然语言处理介绍

自然语言处理(Natural LanguageProcessing)简称NLP,与一般的机器学习任务都不相同,自然语言处理研究我们的语言任务,因为文本是一个复杂的东西,我们如何让计算机去理解我们的自然语言是一个很有挑战的事情,一个普遍的思想就是将我们的语言进行编码

二、常见的词编码方式

1.one-hot

介绍

one-hot是一种简单的词编码方式,它包含每个词在句子中的位置信息,看下面的简单示例

假设有这样一句话: I like the

stars,那么四个单词对应的one-hot向量分别如图中所示,one-hot向量的长度即为句子长度

缺点

  • 仅能表示单词位置信息,无法表示更复杂的,如上下文,单词类型等信息
  • 无法处理词库外的词,即无法处理没有在数据集中的词汇

2.词嵌入

介绍

词嵌入是一种更加有效的表达单词的处理方法,看下面的简单示例

同样的一句话,词嵌入的表示方法如下图所示,每个词的词嵌入向量的长度由我们根据任务来设置,每个值包含了某种信息,上下文,词义等等

说明

词嵌入矩阵通常经过训练得到,训练后我们将获得一个包含所需数据的词嵌入矩阵,方便我们进行后续任务,情感分析,文本生成等

三、代码演示

这一部分展现了Bert预处理模型获取示例文本的词向量矩阵的代码,打印了词嵌入矩阵的维度和第一个词的词嵌入矩阵,仅作拓展,读者可以试着运行来得到一个直观感受(打印出来的维度是(12,768),可我们看到句子只有6个词,这是因为模型的分词方法导致的,它将句子分成10个词,多出来的两个是句首和句尾标识)

from transformers import BertTokenizer, BertModel
import torch
# 使用BERT的tokenizer和模型
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
# 输入文本
text = "Example sentence to get BERT embeddings."
# 使用tokenizer编码文本
input_ids = tokenizer.encode(text, return_tensors='pt')
print(input_ids)
# 获取BERT模型的输出
with torch.no_grad():
    outputs = model(input_ids)
# 获取最后一层的输出(CLS token对应的向量)
last_hidden_states = outputs.last_hidden_state
# 打印CLS token的词嵌入向量
print(f"Embedding for 'CLS' token: {last_hidden_states[0].numpy().shape}")
print(last_hidden_states[0][0].numpy())

四、结语

自然语言处理的编码问题是一个很基础的问题,之后在自然语言处理领域中将会经常看到,请好好了解

感谢阅读,觉得有用的话就订阅下《自然语言处理NLP》专栏吧,有错误也欢迎指出

相关文章
|
28天前
|
自然语言处理 算法 Python
自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
【10月更文挑战第9天】自然语言处理(NLP)在文本分析中的应用:从「被动收集」到「主动分析」
43 4
|
1月前
|
机器学习/深度学习 存储 自然语言处理
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(上)
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(上)
|
16天前
|
机器学习/深度学习 存储 人工智能
大数据中自然语言处理 (NLP)
【10月更文挑战第19天】
109 60
|
14天前
|
人工智能 自然语言处理 语音技术
利用Python进行自然语言处理(NLP)
利用Python进行自然语言处理(NLP)
26 1
|
25天前
|
人工智能 自然语言处理 语音技术
利用Python进行自然语言处理(NLP)
利用Python进行自然语言处理(NLP)
26 3
|
1月前
|
机器学习/深度学习 存储 自然语言处理
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(下)
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(下)
【NLP自然语言处理】探索注意力机制:解锁深度学习的语言理解新篇章(下)
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
详谈什么是自然语言处理(NLP),特点以及使用场景场景(一)
详谈什么是自然语言处理(NLP),特点以及使用场景场景(一)
73 0
|
1月前
|
人工智能 自然语言处理
【NLP自然语言处理】NLP中的常用预训练AI模型
【NLP自然语言处理】NLP中的常用预训练AI模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【10月更文挑战第3天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将分析NLP的基本原理,介绍AI技术如何推动NLP的发展,并讨论当前的挑战和未来的趋势。通过本文,读者将了解AI技术在NLP中的重要性,以及如何利用这些技术解决实际问题。
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习在自然语言处理中的应用与挑战
本文探讨了深度学习技术在自然语言处理(NLP)领域的应用,包括机器翻译、情感分析和文本生成等方面。同时,讨论了数据质量、模型复杂性和伦理问题等挑战,并提出了未来的研究方向和解决方案。通过综合分析,本文旨在为NLP领域的研究人员和从业者提供有价值的参考。

热门文章

最新文章

下一篇
无影云桌面