机器学习第15天:GBDT模型

简介: 机器学习第15天:GBDT模型

GBDT模型介绍

GBDT(Gradient Boosting Decision Tree)也叫做梯度提升决策树,它的主要思想也是集成学习(由名字可以看出GBDT的弱分类器是决策树 ),即训练多个子模型,结合子模型来得到最终结果,但他们也有一些区别


Boosting

Boosting是GBDT与传统集成学习的一个主要区别

传统的集成学习训练过程中,分类器之间不会有任何联系,模型各自独立训练最后结合得出结果

而Boosting训练过程中,分类器会根据上一个分类器的结果来调整,重点关注上一个分类器的误差点,从而更好地提高模型性能


残差

我们接下来来看看分类器之间是怎么联系的,残差代表分类器预测结果与真实值的差距

假设我们有一个预测数字的任务,目标值是40,则会有这样一个过程

  • 第一个分类器预测结果为30,则残差为10
  • 第二个分类器去拟合残差,这时第二个分类器的目标值变成了10,以此类推
  • 最后得到的残差为0,完成任务

可以看到Boosting的思想是每一个分类器去拟合前一个分类器的残差,最后每个分类器的结果加起来就是真实值

GBDT的缺点

  • 由于每个分类器要等待上一个分类器的结果,故模型无法并行训练,消耗的时间可能较多

python代码实现

代码

这段代码使用的数据集是虚拟的,我们这里主要学习模型是如何构建的,在实际任务中将数据集替换为真实数据集即可

# 导入必要的库
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy_score
# 创建虚构的数据集
X, y = make_classification(n_samples=1000, n_features=20, random_state=42)
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 初始化并训练GBDT模型
gbdt_model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)
gbdt_model.fit(X_train, y_train)
# 预测
y_pred = gbdt_model.predict(X_test)
# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

模型参数解释

  • n_estimators: 子分类器数量
  • learning_rate: 学习率
  • max_depth: 决策树最大深度

结语

GBDT是一种优化的集成学习方法,采用了拟合残差的新思想,广泛应用于分类任务和回归任务中,它还有两个优化方法:XGBoost和LightGBM,之后会做具体介绍,敬请期待

感谢阅读,觉得有用的话就订阅下本专栏吧,有错误也欢迎指出

相关文章
|
21天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
5天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
25天前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
50 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
14天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
33 12
|
21天前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
42 8
|
21天前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
41 6
|
24天前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
28天前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
25天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
29天前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
35 0