机器学习第15天:GBDT模型

简介: 机器学习第15天:GBDT模型

GBDT模型介绍

GBDT(Gradient Boosting Decision Tree)也叫做梯度提升决策树,它的主要思想也是集成学习(由名字可以看出GBDT的弱分类器是决策树 ),即训练多个子模型,结合子模型来得到最终结果,但他们也有一些区别


Boosting

Boosting是GBDT与传统集成学习的一个主要区别

传统的集成学习训练过程中,分类器之间不会有任何联系,模型各自独立训练最后结合得出结果

而Boosting训练过程中,分类器会根据上一个分类器的结果来调整,重点关注上一个分类器的误差点,从而更好地提高模型性能


残差

我们接下来来看看分类器之间是怎么联系的,残差代表分类器预测结果与真实值的差距

假设我们有一个预测数字的任务,目标值是40,则会有这样一个过程

  • 第一个分类器预测结果为30,则残差为10
  • 第二个分类器去拟合残差,这时第二个分类器的目标值变成了10,以此类推
  • 最后得到的残差为0,完成任务

可以看到Boosting的思想是每一个分类器去拟合前一个分类器的残差,最后每个分类器的结果加起来就是真实值

GBDT的缺点

  • 由于每个分类器要等待上一个分类器的结果,故模型无法并行训练,消耗的时间可能较多

python代码实现

代码

这段代码使用的数据集是虚拟的,我们这里主要学习模型是如何构建的,在实际任务中将数据集替换为真实数据集即可

# 导入必要的库
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy_score
# 创建虚构的数据集
X, y = make_classification(n_samples=1000, n_features=20, random_state=42)
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 初始化并训练GBDT模型
gbdt_model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)
gbdt_model.fit(X_train, y_train)
# 预测
y_pred = gbdt_model.predict(X_test)
# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')

模型参数解释

  • n_estimators: 子分类器数量
  • learning_rate: 学习率
  • max_depth: 决策树最大深度

结语

GBDT是一种优化的集成学习方法,采用了拟合残差的新思想,广泛应用于分类任务和回归任务中,它还有两个优化方法:XGBoost和LightGBM,之后会做具体介绍,敬请期待

感谢阅读,觉得有用的话就订阅下本专栏吧,有错误也欢迎指出

目录
相关文章
|
3天前
|
机器学习/深度学习 数据采集 自然语言处理
构建高效机器学习模型的策略与实践
【4月更文挑战第30天】 在数据驱动的时代,机器学习(ML)作为一项核心技术,其应用范围和影响力日益扩大。然而,构建一个既高效又准确的机器学习模型并非易事。本文将探讨一系列实用的策略和技术,用于优化机器学习的工作流程,包括数据预处理、特征工程、模型选择、超参数调优以及模型评估等方面。通过这些策略,读者可以提升模型的性能,确保在实际应用中达到预期的准确度和效率。
|
1天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型的最佳实践
【5月更文挑战第2天】 在数据驱动的时代,机器学习已成为智能系统不可或缺的组成部分。本文将深入探讨构建高效机器学习模型的策略,包括数据预处理、特征工程、模型选择、调参技巧以及模型评估方法。我们将通过实际案例分析,揭示如何避免常见陷阱,并利用最佳实践提高模型的性能和泛化能力。文章旨在为从业者提供一套实用的技术指南,帮助他们在面对复杂数据时能够做出明智的决策,并最终实现机器学习项目的高效落地。
|
3天前
|
机器学习/深度学习 运维 持续交付
构建高效自动化运维体系:Ansible与Docker的完美结合构建高效机器学习模型的五大技巧
【4月更文挑战第30天】 在当今快速发展的云计算和微服务架构时代,自动化运维已成为维持系统稳定性和提高效率的关键。本文将探讨如何通过结合Ansible和Docker技术构建一个高效的自动化运维体系。文章不仅介绍了Ansible与Docker的基本原理和优势,还详细阐述了如何整合这两种技术以简化部署流程、加强版本控制,并提高整体运维效率。通过案例分析,我们将展示这一组合在实际环境中的应用效果,以及它如何帮助企业实现持续集成和持续部署(CI/CD)的目标。 【4月更文挑战第30天】 在数据驱动的时代,构建一个高效的机器学习模型是获取洞察力和预测未来趋势的关键步骤。本文将分享五种实用的技巧,帮助数
|
3天前
|
机器学习/深度学习 算法 数据挖掘
构建高效机器学习模型的五大技巧
【4月更文挑战第30天】 在数据科学领域,构建一个高效的机器学习模型是实现精准预测与分析的核心。本文将深入探讨提升模型效能的五个关键技巧:特征工程、模型选择、超参数调优、正则化技术以及交叉验证。通过这些方法的综合应用,读者可以显著提高其机器学习项目的准确率和泛化能力。
|
3天前
|
机器学习/深度学习 数据采集 前端开发
【Python机器学习专栏】模型泛化能力与交叉验证
【4月更文挑战第30天】本文探讨了机器学习中模型泛化能力的重要性,它是衡量模型对未知数据预测能力的关键。过拟合和欠拟合影响泛化能力,而交叉验证是评估和提升泛化能力的有效工具。通过K折交叉验证等方法,可以发现并优化模型,如调整参数、选择合适模型、数据预处理、特征选择和集成学习。Python中可利用scikit-learn的cross_val_score函数进行交叉验证。
|
3天前
|
机器学习/深度学习 数据可视化 前端开发
【Python机器学习专栏】机器学习模型评估的实用方法
【4月更文挑战第30天】本文介绍了机器学习模型评估的关键方法,包括评估指标(如准确率、精确率、召回率、F1分数、MSE、RMSE、MAE及ROC曲线)和交叉验证技术(如K折交叉验证、留一交叉验证、自助法)。混淆矩阵提供了一种可视化分类模型性能的方式,而Python的scikit-learn库则方便实现这些评估。选择适合的指标和验证方法能有效优化模型性能。
|
3天前
|
机器学习/深度学习 算法 前端开发
【Python机器学习专栏】机器学习中的模型融合技术
【4月更文挑战第30天】模型融合,即集成学习,通过结合多个模型提升预测性能。常见方法包括:Bagging(如Random Forest)、Boosting(如AdaBoost、XGBoost)和Stacking。Python中可使用`scikit-learn`实现,例如BaggingClassifier示例。模型融合是机器学习中的强大工具,能提高整体性能并适应复杂问题。
|
3天前
|
机器学习/深度学习 Python
【Python 机器学习专栏】模型选择中的交叉验证与网格搜索
【4月更文挑战第30天】交叉验证和网格搜索是机器学习中优化模型的关键技术。交叉验证通过划分数据集进行多次评估,如K折和留一法,确保模型性能的稳定性。网格搜索遍历预定义参数组合,寻找最佳参数设置。两者结合能全面评估模型并避免过拟合。Python中可使用`sklearn`库实现这一过程,但需注意计算成本、过拟合风险及数据适应性。理解并熟练应用这些方法能提升模型性能和泛化能力。
|
3天前
|
机器学习/深度学习 数据可视化 TensorFlow
【Python 机器学习专栏】使用 TensorFlow 构建深度学习模型
【4月更文挑战第30天】本文介绍了如何使用 TensorFlow 构建深度学习模型。TensorFlow 是谷歌的开源深度学习框架,具备强大计算能力和灵活编程接口。构建模型涉及数据准备、模型定义、选择损失函数和优化器、训练、评估及模型保存部署。文中以全连接神经网络为例,展示了从数据预处理到模型训练和评估的完整流程。此外,还提到了 TensorFlow 的自动微分、模型可视化和分布式训练等高级特性。通过本文,读者可掌握 TensorFlow 基本用法,为构建高效深度学习模型打下基础。
|
3天前
|
机器学习/深度学习 算法 数据挖掘
【Python 机器学习专栏】Python 中的线性回归模型详解
【4月更文挑战第30天】本文介绍了Python中的线性回归模型,包括基本原理、实现步骤和应用。线性回归假设因变量与自变量间存在线性关系,通过建立数学模型进行预测。实现过程涉及数据准备、模型构建、参数估计、评估和预测。常用的Python库有Scikit-learn和Statsmodels。线性回归简单易懂,广泛应用,但对异常值敏感且假设线性关系。其扩展形式如多元线性、多项式回归和正则化方法能适应不同场景。理解并运用线性回归有助于数据分析和预测。