Scipy 高级教程——控制系统分析与设计

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Scipy 高级教程——控制系统分析与设计【1月更文挑战第14篇】

Python Scipy 高级教程:控制系统分析与设计

Scipy 提供了强大的控制系统分析与设计工具,可以用于设计和分析线性时不变系统。本篇博客将深入介绍 Scipy 中的控制系统工具,并通过实例演示如何应用这些工具。

1. 系统建模

在控制系统中,我们通常使用传递函数或状态空间模型来描述系统。Scipy 提供了 scipy.signal 模块,其中包含了创建传递函数和状态空间模型的函数。

传递函数模型

import matplotlib.pyplot as plt
from scipy.signal import TransferFunction, step

# 定义传递函数的分子和分母多项式系数
numerator = [1]
denominator = [1, 2, 1]

# 创建传递函数模型
sys_tf = TransferFunction(numerator, denominator)

# 绘制阶跃响应
t, y = step(sys_tf)
plt.plot(t, y)
plt.xlabel('时间')
plt.ylabel('响应')
plt.title('传递函数阶跃响应')
plt.show()

状态空间模型

from scipy.signal import StateSpace

# 定义状态空间矩阵
A = [[-1, -2], [3, -4]]
B = [[1], [0]]
C = [[0, 1]]
D = [[0]]

# 创建状态空间模型
sys_ss = StateSpace(A, B, C, D)

# 绘制阶跃响应
t, y = step(sys_ss)
plt.plot(t, y)
plt.xlabel('时间')
plt.ylabel('响应')
plt.title('状态空间模型阶跃响应')
plt.show()

2. 系统分析

Scipy 提供了多种工具用于系统分析,如频域分析、稳定性分析等。

频域分析

from scipy.signal import bode

# 绘制传递函数的频率响应曲线
w, mag, phase = bode(sys_tf)
plt.figure(figsize=(10, 6))
plt.subplot(2, 1, 1)
plt.semilogx(w, mag)
plt.title('传递函数频率响应曲线 - 幅值')
plt.subplot(2, 1, 2)
plt.semilogx(w, phase)
plt.title('传递函数频率响应曲线 - 相位')
plt.show()

稳定性分析

from scipy.signal import TransferFunction, ss2tf, cont2discrete
from scipy.linalg import eig

# 将传递函数转换为状态空间模型
A, B, C, D = ss2tf(sys_tf.num, sys_tf.den)
sys_ss_stable = StateSpace(A, B, C, D)

# 检查系统的稳定性
eigenvalues, _ = eig(sys_ss_stable.A)
print("系统的特征值:", eigenvalues)

3. 控制器设计

Scipy 中也包含了常见的控制器设计工具,如 PID 控制器、根轨迹设计等。

PID 控制器设计

from scipy.signal import TransferFunction, pid2ss

# 定义系统的传递函数
numerator_sys = [1]
denominator_sys = [1, 2, 1]
sys_tf = TransferFunction(numerator_sys, denominator_sys)

# 设计 PID 控制器
Kp = 2
Ki = 1
Kd = 0.5
numerator_pid = [Kd, Kp, Ki]
denominator_pid = [1, 0]
pid_tf = TransferFunction(numerator_pid, denominator_pid)

# 将系统和控制器连接
sys_pid = sys_tf * pid_tf

# 绘制阶跃响应
t, y = step(sys_pid)
plt.plot(t, y)
plt.xlabel('时间')
plt.ylabel('响应')
plt.title('PID 控制器阶跃响应')
plt.show()

根轨迹设计

from scipy.signal import tf2ss, place, root_locus

# 将传递函数转换为状态空间模型
A, B, C, D = tf2ss(sys_tf.num, sys_tf.den)
sys_ss = StateSpace(A, B, C, D)

# 设计控制器使闭环系统的极点沿指定轨迹移动
desired_poles = [-1, -1.5]
K = place(sys_ss.A, sys_ss.B, desired_poles)

# 计算闭环系统的传递函数
A_closed = sys_ss.A - sys_ss.B @ K
sys_tf_closed = ss2tf(A_closed, sys_ss.B, sys_ss.C, sys_ss.D)

# 绘制根轨迹
t, s, _ = root_locus(sys_tf_closed)
plt.plot(t, s, marker='o')
plt.xlabel('实部')
plt.ylabel('虚部')
plt.title('根轨迹设计')
plt.grid(True)
plt.show()

4. 总结

通过本篇博客的介绍,你可以更好地理解和使用 Scipy 中的控制系统工具。这些工具对于分析和设计线性时不变系统以及设计控制器非常有用。在实际应用中,结合系统的建模、分析和设计工具,可以更有效地实现对控制系统的理解和优化。希望这篇博客对你有所帮助!

目录
相关文章
|
13天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
108 70
|
15天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
120 68
|
11天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
88 36
|
5天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
40 15
|
9天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
58 18
|
4天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
30 8
|
4天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
22 7
|
4天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
22 4
|
4天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
20 5
|
18天前
|
测试技术 开发者 Python
使用Python解析和分析源代码
本文介绍了如何使用Python的`ast`模块解析和分析Python源代码,包括安装准备、解析源代码、分析抽象语法树(AST)等步骤,展示了通过自定义`NodeVisitor`类遍历AST并提取信息的方法,为代码质量提升和自动化工具开发提供基础。
32 8