使用线程池时候,我们可能会使用下面四个场景,这在alibaba代码规范中都是明令禁止的
// 创建一个单线程化的Executor[因为数量固定,可能会堆积大量请求,导致OOM] private static ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor(); // 创建一个固定数目线程的线程池[因为数量固定,可能会堆积大量请求,导致OOM] private static ExecutorService fixedThreadPool = Executors.newFixedThreadPool(10); // 创建一个可执行命令的单线程Executor[可能会创建大量的线程,导致OOM] private static ExecutorService singleThreadScheduledExecutor = Executors.newSingleThreadScheduledExecutor(); // 创建一个可缓存的线程池(60S存活时间)[可能会创建大量的线程,导致OOM] private static ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
我们先来一个简单的例子,模拟一下使用 Executors 导致 OOM 的情况。
public class ExecutorsDemo { private static ExecutorService executor = Executors.newFixedThreadPool(15); public static void main(String[] args) { for (int i = 0; i < Integer.MAX_VALUE; i++) { executor.execute(new SubThread()); } } } class SubThread implements Runnable { @Override public void run() { try { Thread.sleep(10000); } catch (InterruptedException e) { //do nothing } } }
通过指定 JVM 参数:-Xmx8m -Xms8m 运行以上代码,会抛出 OOM:
Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416) at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371) at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)
以上代码指出,ExecutorsDemo.java 的第 16 行,就是代码中的 executor.execute(new SubThread());。
通过上面的例子,我们知道了 Executors 创建的线程池存在 OOM 的风险,那么到底是什么原因导致的呢?我们需要深入 Executors 的源码来分析一下。其实,在上面的报错信息中,我们是可以看出蛛丝马迹的,在以上的代码中其实已经说了,真正的导致 OOM 的其实是 LinkedBlockingQueue.offer 方法。
Exception in thread "main" java.lang.OutOfMemoryError: GC overhead limit exceeded at java.util.concurrent.LinkedBlockingQueue.offer(LinkedBlockingQueue.java:416) at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1371) at com.hollis.ExecutorsDemo.main(ExecutorsDemo.java:16)
如果读者翻看代码的话,也可以发现,其实底层确实是通过 LinkedBlockingQueue 实现的:
public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); }
如果读者对 Java 中的阻塞队列有所了解的话,看到这里或许就能够明白原因了。Java 中 的 BlockingQueue 主 要 有 两 种 实 现, 分 别 是 ArrayBlockingQueue 和 LinkedBlockingQueue。ArrayBlockingQueue 是一个用数组实现的有界阻塞队列,必须设置容量。LinkedBlockingQueue 是一个用链表实现的有界阻塞队列,容量可以选择进行设置,不设置的话,将是一个无边界的阻塞队列,最大长度为 Integer.MAX_VALUE。这里的问题就出在:不设置的话,将是一个无边界的阻塞队列,最大长度为Integer.MAX_VALUE。也就是说,如果我们不设置 LinkedBlockingQueue 的容量的话,其默认容量将会是 Integer.MAX_VALUE。 而 newFixedThreadPool 中创建 LinkedBlockingQueue 时,并未指定容量。此时,LinkedBlockingQueue 就是一个无边界队列,对于一个无边界队列来说,是可以不断的向队列中加入任务的,这种情况下就有可能因为任务过多而导致内存溢出问题。上面提到的问题主要体现在 newFixedThreadPool 和 newSingleThreadExecutor 两个工厂方法上,并不是说newCachedThreadPool 和 newScheduledThreadPool 这两个方法就安全了,这两种方式创建的最大线程数可能是Integer.MAX_VALUE,而创建这么多线程,必然就有可能导致 OOM
正确使用:
private static ExecutorService executor = new ThreadPoolExecutor(10, 10, 60L, TimeUnit.SECONDS, new ArrayBlockingQueue(10));
这种情况下,一旦提交的线程数超过当前可用线程数时,就会抛出java.util.concurrent.RejectedExecutionException,这是因为当前线程池使用的队列是有边界队列,队列已经满了便无法继续处理新的请求。但是异常(Exception)总比发生错误(Error)要好。
但是部分alibaba作者更推荐使用guava创建对应的线程池,示例如下:
public class ExecutorsDemo { private static ThreadFactory namedThreadFactory = new ThreadFactoryBuilder() .setNameFormat("demo-pool-%d").build(); private static ExecutorService pool = new ThreadPoolExecutor(5, 200, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(1024), namedThreadFactory, new ThreadPoolExecutor. AbortPolicy()); public static void main(String[] args) { for (int i = 0; i < Integer.MAX_VALUE; i++) { pool.execute(new SubThread()); } } }
通过上述方式创建线程时,不仅可以避免 OOM 的问题,还可以自定义线程名称,更加方便的出错的时候溯源。