异步&线程池 线程池的七大参数 初始化线程的4种方式 【上篇】

简介: 这篇文章详细介绍了Java中线程的四种初始化方式,包括继承Thread类、实现Runnable接口、实现Callable接口与FutureTask结合使用,以及使用线程池。同时,还深入探讨了线程池的七大参数及其作用,解释了线程池的运行流程,并列举了四种常见的线程池类型。最后,阐述了在开发中使用线程池的原因,如降低资源消耗、提高响应速度和增强线程的可管理性。

一、线程回顾

1、初始化线程的 4 种方式

1)、继承 Thread
2)、实现 Runnable 接口
3)、实现 Callable 接口 + FutureTask (可以拿到返回结果,可以处理异常)
4)、线程池

提示

  • 方式 1 和方式 2:主进程无法获取线程的运算结果。不适合当前场景
  • 方式 3:主进程可以获取线程的运算结果,但是不利于控制服务器中的线程资源。可以导致服务器资源耗尽。
  • 方式 4:通过如下两种方式初始化线程池
Executors.newFiexedThreadPool(3);
//或者
new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, TimeUnit unit, workQueue, threadFactory, handler);

通过线程池性能稳定,也可以获取执行结果,并捕获异常。但是,在业务复杂情况下,一个异步调用可能会依赖于另一个异步调用的执行结果

1.1 继承 Thread

public class ThreadTestDemo {
    public static void main(String[] args) {
        System.out.println("main.....start......");
        Thread01 thread01 = new Thread01();
        thread01.start(); //启动线程
        System.out.println("main.....end......");

    }

    public static class Thread01 extends Thread{
        @Override
        public void run() {
            System.out.println("当前线程是:"+Thread.currentThread().getId());
            int i = 8 / 2;
            System.out.println("运算结果是:"+i);
        }
    }
}

结果

在这里插入图片描述


1.2 实现 Runnable 接口

public class ThreadTestDemo {
    public static void main(String[] args) {
        System.out.println("main.....start......");
        Runnable01 runnable01 = new Runnable01();
        new Thread(runnable01).start();
        System.out.println("main.....end......");

    }

    /**
     * 实现 Runnable 接口
     */
    public static class Runnable01 implements Runnable{
        @Override
        public void run() {
            System.out.println("当前线程是:"+Thread.currentThread().getId());
            int i = 10 / 2;
            System.out.println("运算结果是:"+i);
        }
    }
}

在这里插入图片描述

1.3 实现 Callable 接口

public class ThreadTestDemo {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        System.out.println("main.....start......");
        FutureTask<Integer> futureTask = new FutureTask<>(new Callable01());
        new Thread(futureTask).start();
        //阻塞等待整个线程执行完成,获取返回结果
        Integer integer = futureTask.get();
        System.out.println("获取到的线程返回结果是:"+integer);
        System.out.println("main.....end......");

    }

    /**
     * 实现 Callable 接口 + FutureTask (可以拿到返回结果,可以处理异常)
     */
    public static class Callable01 implements Callable<Integer>{
        @Override
        public Integer call() throws Exception {
            System.out.println("当前线程是:"+Thread.currentThread().getId());
            int i = 12 / 2;
            System.out.println("运算结果是:"+i);
            return i;
        }
    }
}

测试结果

在这里插入图片描述

1.4 线程池

public class ThreadTestDemo {
    public static ExecutorService executor = Executors.newFixedThreadPool(10);

    public static void main(String[] args) throws ExecutionException, InterruptedException {
        System.out.println("main.....start......");
        //提交给线程池去执行
        executor.execute(new Runnable01());
        System.out.println("main.....end......");

    }

    /**
     * 实现 Runnable 接口
     */
    public static class Runnable01 implements Runnable{
        @Override
        public void run() {
            System.out.println("当前线程是:"+Thread.currentThread().getId());
            int i = 10 / 2;
            System.out.println("运算结果是:"+i);
        }
    }

}

执行结果

在这里插入图片描述

2、线程池的七大参数

2.1 参数说明

  • corePoolSize:核心线程数量 一直正在保持运行的线程
  • maximumPoolSize:最大线程数,线程池允许创建的最大线程数。
  • keepAliveTime:超出 corePoolSize 后创建的线程的存活时间。
  • unit:keepAliveTime 的时间单位。
  • workQueue:任务队列,用于保存待执行的任务。
  • threadFactory:线程池内部创建线程所用的工厂。
  • handler:任务无法执行时的处理器。
* @param corePoolSize the number of threads to keep in the pool, even
* if they are idle, unless {@code allowCoreThreadTimeOut} is set
池中一直保持的线程的数量,即使线程空闲。除非设置了 allowCoreThreadTimeOut
* @param maximumPoolSize the maximum number of threads to allow in the
* pool
池中允许的最大的线程数
* @param keepAliveTime when the number of threads is greater than
* the core, this is the maximum time that excess idle threads
* will wait for new tasks before terminating. 当线程数大于核心线程数的时候,线程在最大多长时间没有接到新任务就会终止释放,
最终线程池维持在 corePoolSize 大小
* @param unit the time unit for the {@code keepAliveTime} argument
时间单位
* @param workQueue the queue to use for holding tasks before they are
* executed. This queue will hold only the {@code Runnable}
* tasks submitted by the {@code execute} method. 阻塞队列,用来存储等待执行的任务,如果当前对线程的需求超过了 corePoolSize
大小,就会放在这里等待空闲线程执行。
* @param threadFactory the factory to use when the executor
* creates a new thread
创建线程的工厂,比如指定线程名等
* @param handler the handler to use when execution is blocked
* because the thread bounds and queue capacities are reached
拒绝策略,如果线程满了,线程池就会使用拒绝策略。

在这里插入图片描述

2.2 运行流程

  • 1、线程池创建,准备好 core 数量的核心线程,准备接受任务
  • 2、新的任务进来,用 core 准备好的空闲线程执行。
    • (1) 、core 满了,就将再进来的任务放入阻塞队列中。空闲的 core 就会自己去阻塞队列获取任务执行
    • (2) 、阻塞队列满了,就直接开新线程执行,最大只能开到 max 指定的数量
    • (3) 、max 都执行好了。Max-core 数量空闲的线程会在 keepAliveTime 指定的时间后自动销毁。最终保持到 core 大小
    • (4) 、如果线程数开到了 max 的数量,还有新任务进来,就会使用 reject 指定的拒绝策略进行处理
  • 3、所有的线程创建都是由指定的 factory 创建的。

3、常见的 4 种线程池

  • newCachedThreadPool

    • 创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
  • newFixedThreadPool

    • 创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。
  • newScheduledThreadPool

    • 创建一个定长线程池,支持定时及周期性任务执行。
  • newSingleThreadExecutor

    • 创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。

在这里插入图片描述


3.1 newCachedThreadPool

在这里插入图片描述

3.2 newFixedThreadPool

在这里插入图片描述

3.3 newScheduledThreadPool

在这里插入图片描述

3.4 newSingleThreadExecutor

在这里插入图片描述

4、开发中为什么使用线程池

  • 降低资源的消耗

    • 通过重复利用已经创建好的线程降低线程的创建和销毁带来的损耗
  • 提高响应速度

    • 因为线程池中的线程数没有超过线程池的最大上限时,有的线程处于等待分配任务的状态,当任务来时无需创建新的线程就能执行
  • 提高线程的可管理性

    • 线程池会根据当前系统特点对池内的线程进行优化处理,减少创建和销毁线程带来的系统开销。无限的创建和销毁线程不仅消耗系统资源,还降低系统的稳定性,使用线程池进行统一分配
相关文章
|
29天前
|
监控 Kubernetes Java
阿里面试:5000qps访问一个500ms的接口,如何设计线程池的核心线程数、最大线程数? 需要多少台机器?
本文由40岁老架构师尼恩撰写,针对一线互联网企业的高频面试题“如何确定系统的最佳线程数”进行系统化梳理。文章详细介绍了线程池设计的三个核心步骤:理论预估、压测验证和监控调整,并结合实际案例(5000qps、500ms响应时间、4核8G机器)给出具体参数设置建议。此外,还提供了《尼恩Java面试宝典PDF》等资源,帮助读者提升技术能力,顺利通过大厂面试。关注【技术自由圈】公众号,回复“领电子书”获取更多学习资料。
|
9天前
|
缓存 安全 Java
面试中的难题:线程异步执行后如何共享数据?
本文通过一个面试故事,详细讲解了Java中线程内部开启异步操作后如何安全地共享数据。介绍了异步操作的基本概念及常见实现方式(如CompletableFuture、ExecutorService),并重点探讨了volatile关键字、CountDownLatch和CompletableFuture等工具在线程间数据共享中的应用,帮助读者理解线程安全和内存可见性问题。通过这些方法,可以有效解决多线程环境下的数据共享挑战,提升编程效率和代码健壮性。
37 6
|
9天前
|
安全 Java C#
Unity多线程使用(线程池)
在C#中使用线程池需引用`System.Threading`。创建单个线程时,务必在Unity程序停止前关闭线程(如使用`Thread.Abort()`),否则可能导致崩溃。示例代码展示了如何创建和管理线程,确保在线程中执行任务并在主线程中处理结果。完整代码包括线程池队列、主线程检查及线程安全的操作队列管理,确保多线程操作的稳定性和安全性。
|
1月前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
109 17
|
3月前
|
Java
.如何根据 CPU 核心数设计线程池线程数量
IO 密集型:核心数*2 计算密集型: 核心数+1 为什么加 1?即使当计算密集型的线程偶尔由于缺失故障或者其他原因而暂停时,这个额外的线程也能确保 CPU 的时钟周期不会被浪费。
151 4
|
3月前
|
Java
线程池七大参数
核心线程数:线程池中的基本线程数量 最大线程数:当阻塞队列满了之后,逐一启动 最大线程的存活时间:当阻塞队列的任务执行完后,最大线长的回收时间 最大线程的存活时间单位 阻塞队列:当核心线程满后,后面来的任务都进入阻塞队列 线程工厂:用于生产线程
|
3月前
|
Java
线程池内部机制:线程的保活与回收策略
【10月更文挑战第24天】 线程池是现代并发编程中管理线程资源的一种高效机制。它不仅能够复用线程,减少创建和销毁线程的开销,还能有效控制并发线程的数量,提高系统资源的利用率。本文将深入探讨线程池中线程的保活和回收机制,帮助你更好地理解和使用线程池。
164 2
|
3天前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
32 20
|
2月前
|
NoSQL Redis
单线程传奇Redis,为何引入多线程?
Redis 4.0 引入多线程支持,主要用于后台对象删除、处理阻塞命令和网络 I/O 等操作,以提高并发性和性能。尽管如此,Redis 仍保留单线程执行模型处理客户端请求,确保高效性和简单性。多线程仅用于优化后台任务,如异步删除过期对象和分担读写操作,从而提升整体性能。
79 1
|
4月前
|
存储 消息中间件 资源调度
C++ 多线程之初识多线程
这篇文章介绍了C++多线程的基本概念,包括进程和线程的定义、并发的实现方式,以及如何在C++中创建和管理线程,包括使用`std::thread`库、线程的join和detach方法,并通过示例代码展示了如何创建和使用多线程。
79 1