leetcode-6113:无限集中的最小数字

简介: leetcode-6113:无限集中的最小数字

题目

题目连接

现有一个包含所有正整数的集合 [1, 2, 3, 4, 5, …] 。

实现 SmallestInfiniteSet 类:

  • SmallestInfiniteSet() 初始化 SmallestInfiniteSet 对象以包含 所有 正整数。
  • int popSmallest() 移除 并返回该无限集中的最小整数。
  • void addBack(int num) 如果正整数 num 不 存在于无限集中,则将一个 num 添加 到该无限集中。

示例:

输入
["SmallestInfiniteSet", "addBack", "popSmallest", "popSmallest", "popSmallest", "addBack", "popSmallest", "popSmallest", "popSmallest"]
[[], [2], [], [], [], [1], [], [], []]
输出
[null, null, 1, 2, 3, null, 1, 4, 5]
解释
SmallestInfiniteSet smallestInfiniteSet = new SmallestInfiniteSet();
smallestInfiniteSet.addBack(2);    // 2 已经在集合中,所以不做任何变更。
smallestInfiniteSet.popSmallest(); // 返回 1 ,因为 1 是最小的整数,并将其从集合中移除。
smallestInfiniteSet.popSmallest(); // 返回 2 ,并将其从集合中移除。
smallestInfiniteSet.popSmallest(); // 返回 3 ,并将其从集合中移除。
smallestInfiniteSet.addBack(1);    // 将 1 添加到该集合中。
smallestInfiniteSet.popSmallest(); // 返回 1 ,因为 1 在上一步中被添加到集合中,
                                   // 且 1 是最小的整数,并将其从集合中移除。
smallestInfiniteSet.popSmallest(); // 返回 4 ,并将其从集合中移除。
smallestInfiniteSet.popSmallest(); // 返回 5 ,并将其从集合中移除。

解题

方法一:有序集合作为补集

创建一个集合set,用于作为无限集合的补集,存储被移除的数。

  • 如果补集不是从1开始,那么就插入1
  • 如果补集从1开始,就找到第一个非连续的值
class SmallestInfiniteSet {
public:
    set<int> set;//存储去掉的
    SmallestInfiniteSet() {
    }
    int popSmallest() {
        auto it=set.begin();
        if(set.empty()||*it>1){
            set.insert(1);
            return 1;
        }else{
            int index=1;
            while(it!=set.end()){
                if(*it==index){
                    it++;
                    index++;
                }else{
                    set.insert(index);
                    return index;
                }
            }
            if(it==set.end()){
                set.insert(index);
                return index;
            }
        }
        return -1;
    }
    void addBack(int num) {
        if(set.count(num)){
            set.erase(num);
        }
    }
};
相关文章
|
13天前
|
数据采集 人工智能 安全
|
8天前
|
编解码 人工智能 自然语言处理
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
663 4
|
8天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
350 164
|
7天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
359 155