枚举(蓝桥练习)(反倍数、特别数的和、找到最多的数、小蓝的漆房、小蓝和小桥的挑战)

简介: 枚举(蓝桥练习)(反倍数、特别数的和、找到最多的数、小蓝的漆房、小蓝和小桥的挑战)



一、枚举算法介绍

枚举算法是一种基本的算法思想,它通过穷举所有可能的情况来解决问题。它的基本思想是将问题的解空间中的每个可能的解都枚举出来,并进行验证和比较,找到满足问题条件的最优解或者所有解。

枚举算法适用于问题规模较小、解空间可穷举的情况。它的优点是简单直观,不需要复杂的数学推导,易于实现。但是,由于需要穷举所有可能的情况,对于问题规模较大的情况,枚举算法的时间复杂度可能会非常高,效率较低。

二、解空间的类型

解空间可以是一个范围内的所有数字(或二元组、字符串等数据),或者满足某个条件的所有数字

当然也可以是解空间树,一般可分为子集树和排列树,针对解空间树,需要使用回溯法进行枚举(在后面讲到搜索的时候会讲到)。

我们目前仅使用循环去暴力枚举解空间,具体的解空间类型需要根据题目来理解构造。

三、循环枚举解空间

1.首先确定解空间的维度,即问题中需要枚举的变量个数。例如当题目要求的是满足条件的数字时,我们可以循环枚举某个范围内的数字。如果要求的是满足条件的二元组,我们可以用双重循环分别枚举第一个和第二个变量,从而构造出一个二元组。

2.对于每个变量,确定其可能的取值范围。这些范围可以根据问题的性质和约束条件来确定。

这一步往往是时间复杂度优化的关键。

3.在循环体内,针对每个可能解进行处理。可以进行问题的验证、计算、输出等操作

四、例题

(一、反倍数)

用户登录

题目描述

给定三个整数 a,b,c,如果一个整数既不是 a的整数倍也不是b的整数倍还不是 c的整数倍,则这个数称为反倍数。

请问在 1至 n 中有多少个反倍数。

输入描述

输入的第一行包含一个整数 n。

第二行包含三个整数 a,b,c,相邻两个数之间用一个空格分隔。其中,1≤n<1000000,1≤a≤n,1≤b≤n,1≤c≤n

输出描述

输出一行包含一个整数,表示答案。

#define  _CRT_SECURE_NO_WARNINGS 1
#include<bits/stdc++.h>
using namespace std; // 使用std命名空间,以便直接使用cout、cin等,而不是std::cout、std::cin
int a, b, c;
bool f(int x)
{
    return x % a != 0 && x % b != 0 && x % c != 0;
}
int main()
{
    int n; cin >> n;
    cin >> a >> b >> c;
    int ans = 0;
    for (int i = 1; i <= n; ++i)
    {
        if (f(i))ans ++;
    }
    cout << ans << '\n';
    return 0;
}

(二、特别数的和)

用户登录

题目描述

小明对数位中含有 2、0、1、9的数字很感兴趣(不包括前导 0),在1到40 中这样的数包括 1、2、9、10 至 32、39 和 40,共 28 个,他们的和是574。

请问,在1到n中,所有这样的数的和是多少?

输入描述

输入格式:

输入一行包含两个整数 n(1≤n≤ 104)

输出描述

输出一行,包含一个整数,表示满足条件的数的和。

#include <bits/stdc++.h>
using namespace std;
bool f(int x)
{
    while (x)
    {
        int y = x % 10; //个位数
        if (y == 2 || y == 0 || y == 1 || y == 9)return true;
        x /= 10; //缩小十倍,向下取整
    }
    return false;
}
int main()
{
    int n; cin >> n;
    int ans = 0;
    for (int i = 1; i <= n; ++i)
    {
        if (f(i))ans += i;
    }
    cout << ans << '\n';
    return 0;
}

(三、找到最多的数)

用户登录

题目描述

小明对数位中含有 2、0、1、9的数字很感兴趣(不包括前导 0),在1到40 中这样的数包括 1、2、9、10 至 32、39 和 40,共 28 个,他们的和是574。

请问,在1到n 中,所有这样的数的和是多少?

输入描述

输入格式:

输入一行包含两个整数n(1≤n≤ 104)

#include <bits/stdc++.h>
using namespace std;
bool f(int x)
{
    while (x)
    {
        int y = x % 10;
        if (y == 2 || y == 0 || y == 1 || y == 9)return true;
        x /= 10;
    }
    return false;
}
int main()
{
    int n; cin >> n;
    int ans = 0;
    for (int i = 1; i <= n; ++i)
    {
        if (f(i))ans += i;
    }
    cout << ans << '\n';
    return 0;
}

(四、小蓝的漆房)

用户登录

问题描述

小蓝是一位有名的漆匠,他的朋友小桥有一个漆房,里面有一条长长的走廊,走廊两旁有许多相邻的房子,每间房子最初被涂上了一种颜色。

小桥来找小蓝,想让他把整个走廊都涂成同一个颜色。小蓝告诉小桥,他每天只能涂一段长度为ん的区间。对于每个区间,他可以选择将其中的房子重新涂上任何一种颜色,或者保持原来的颜色不变

小桥想知道小蓝至少要涂几天,才能让整个走廊变得美丽。

请帮助小桥解决这个问题。

输入格式

第一行包含一个整数t(1< 100),表示测试用例的数量.

每个测试用例的第一行包含两个整数 n 和 k(1 ≤ k≤n< 104),第二行包含几 个整数 a1,a2,···,an(1 < ai< 60),分别表示每个房子最初的颜色。

保证所有测试用例中 n 的总和不超过 10000。

首先,我们可以枚举整个走廊需要被涂上的颜色。因为颜色的种类数最多只有 60,所以我们可以尝试枚举每一种颜色。

对于每种颜色,我们需要计算涂上它需要的最少天数。我们可以从左到右遍历每个房子,如果该房子的颜色不是当前正在涂的颜色,那么我们就从该房子开始,向右涂 k 个房子,直到将该区间都涂上目标颜色。具体来说,我们可以用另一个数组 b 来记录当前的涂漆情况,每次枚举涂漆区间时,都将 b 数组中对应的区间涂成目标颜色。

在涂漆过程中,我们需要记录涂漆的天数 cnt,每当涂漆颜色发生变化时,我们就需要增加一天。最终,我们可以对所有颜色涂上所需的天数取最小值,该最小值即为答案。

综上所述,解题步骤如下:

  1. 枚举整个走廊需要被涂上的颜色;
  2. 对于每种颜色,计算涂上它需要的最少天数:从左到右遍历每个房子,如果该房子的颜色不是当前正在涂的颜色,那么就从该房子开始,向右涂 k 个房子,直到将区间涂上目标颜色,同时记录涂漆天数 cnt,每当涂漆颜色发生变化时,增加一天;
  3. 将所有颜色涂上所需的天数取最小值,即为答案。
#include <bits/stdc++.h>
void solve(const int &Case) {
    int n, k;
    std::cin >> n >> k;
    std::vector<int> a(n);
    for (auto &x: a)std::cin >> x; //range-for-each
    int ans = n + 1; // 初始化答案ans为一个大于n的值,以便后续取最小值  
    for (int c = 1; c <= 60; c++) {//枚举最终颜色
        int ret = 0;//存放当前最终颜色
        for (int i = 0; i < n; i++) {
            if (a[i] != c) { 
            // 如果出现一个与最终颜色不同的位置, 则贪心地选择该位置为染色的起点
                //i,i + 1,i + 2,...,i +k - 1 都会被立刻染成最终颜色
                ret++;
                i = i + k - 1;
            }
        }
        ans = std::min(ans, ret);
    }
    std::cout << ans << '\n';
}
int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);
    int T = 1;
    std::cin >> T;
    for (int i = 1; i <= T; i++)solve(i);
    return 0;
}

(五、小蓝和小桥的挑战)

用户登录

解题思路

这道题的解题思路比较简单,具体步骤如下:

  1. 读入测试数据的数量 t,对于每组测试数据,读入物品数量 n 和物品价值 1,2,⋯,a1,a2,⋯,an。
  2. 统计价值为 0 的物品个数 z,并计算物品的价值和 sum。如果序列中存在 00,则我们需要对所有的 0 进行一次操作,使得其变为 1,这样才能保证价值积不为 0。因此,我们至少需要进行 z 次操作。
  3. 对于经过操作后的序列,统计其所有元素的和 sum。如果sum≠0,则此时的序列已经满足题目要求,输出操作次数 z 即可。
  4. 如果 sum=0,则我们需要对任意一个 ai>0,并对其进行一次操作,使得 ai++,因为只要序列中存在正整数,我们就可以利用这些正整数来使得序列的价值积不为 00。如果序列中不存在 ai>0,则我们需要对任意一个元素进行一次操作,使得序列中至少有一个非 0 的元素,然后再按照上述方法进行操作。因此,此时的操作次数为 z+1。
#define  _CRT_SECURE_NO_WARNINGS 1
#include<bits/stdc++.h>
using namespace std;
const int N = 1e3 + 10;
int a[N], t, n;
int main()
{
  cin >> t;
  while (t--)
  {
    cin >> n;
    int sum = 0, z = 0;
    for (int i = 1; i <= n; ++i)
    {
      cin >> a[i],sum += a[i];
      if (!a[i])++z;//如果a[i] == 0,执行一次操作
    }
    sum += z;//输入的数 + 执行加一后的次数
    if (sum == 0)//如果和为0
    cout << z + 1 << '\n';
    else cout << z << '\n';
  }
  return 0;
}

乘积和加法的和都不为0

如果只考虑乘积不为0

如果乘积为0,则说明存在零(zero)元素

此时的答案一定是所有零(zero)元素都加一

如果只考虑加法为0, 那么随便选择一个数加一

回到原问题, 同时考虑乘法和加法

1.乘积为0, 且加法也为0

此时将所有零(zero)元素加一即可

2.乘积为0, 加法不为0

2.1.乘积为0, 加法不等于零(zero)元素的个数的相反数

此时将所有零(zero)元素加一即可

2.2.乘积为0, 加法等于零(zero)元素的个数的相反数

此时将所有0元素加一后, 再选择一个数加一

3.乘积不为0,加法为0

此时将某个正数加一即可

4.乘积不为0,加法也不为0

不动

#include <bits/stdc++.h>
void solve(const int &case)
{
  int n;
  std::cin >> n;
  int zeroCount = 0, sum = 0; // zeroCount 记录0的个数,sum 记录所有整数的和  
    for (int i = 0; i < n; i++) {  
        int x;  
        std::cin >> x; // 输入一个整数  
        if (x == 0) zeroCount++; // 如果输入的整数是0,zeroCount自增  
        sum += x; // 将输入的整数累加到sum上  
    }  
    // 如果存在0,则至少需要zeroCount次操作将0变为非0数(每次操作可以将一个0变成任意非0数)  
    // 如果不存在0,但所有数的和为0,则至少需要1次操作(将所有数同时加上一个非0数)  
    // 如果既不存在0,所有数的和也不为0,则不需要操作  
    if (zeroCount > 0) {  
        std::cout << zeroCount << '\n'; // 输出将0变成非0数的最少操作次数  
    } else if (sum == 0) {  
        std::cout << 1 << '\n'; // 输出将所有数和变成非0数的最少操作次数(1次)  
    } else {  
        std::cout << 0 << '\n'; // 不需要操作,直接输出0  
    }
}
int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    std::cout.tie(nullptr);// 取消读入输出的同步流, 取消后不能使用 scanf和printf
    int T = 1;
    std::cin >> T;
    for (int i = 1; i <= T; i++)solve(i);
    return 0;
}

今天就先到这了!!!

看到这里了还不给博主扣个:

⛳️ 点赞☀️收藏 ⭐️ 关注!

你们的点赞就是博主更新最大的动力!

有问题可以评论或者私信呢秒回哦。

相关文章
|
存储 程序员 芯片
微机原理与接口技术 8086微处理器系统结构详解
本文主要详解8086微处理器系统结构。主要从以下几个方面进行分析与总结:8086 CPU结构、EU与BIU的结构和功能、8086寄存器结构、8086系统时钟与指令周期、周期概念、8086系统时钟、指令周期、总线周期、8086存储器组织、堆栈的概念、存储器组织与I/O结构、存储体与总线的连接、8086的内外部中断、中断向量表。
2391 0
微机原理与接口技术 8086微处理器系统结构详解
|
算法 Java C语言
KMP算法
KMP算法
|
Rust Ubuntu Linux
|
网络协议
计算机网络的分类
【10月更文挑战第11天】 计算机网络可按覆盖范围(局域网、城域网、广域网)、传输技术(有线、无线)、拓扑结构(星型、总线型、环型、网状型)、使用者(公用、专用)、交换方式(电路交换、分组交换)和服务类型(面向连接、无连接)等多种方式进行分类,每种分类方式揭示了网络的不同特性和应用场景。
|
数据挖掘 数据处理 索引
Pandas数据重命名:列名与索引为标题
Pandas 是强大的数据分析工具,支持灵活的数据结构和操作。本文介绍如何使用 Pandas 对 `DataFrame` 的列名和索引进行重命名,包括直接赋值法、`rename()` 方法及索引修改。通过代码示例展示了具体操作,并讨论了常见问题如名称冲突、数据类型不匹配及 `inplace` 参数的使用。掌握这些技巧可使数据更清晰易懂,便于后续分析。
968 29
|
人工智能 算法
蓝桥杯真题宝藏排序详解 | 冒泡排序 选择排序 插入排序
蓝桥杯真题宝藏排序详解 | 冒泡排序 选择排序 插入排序
|
算法 C语言
(“拨”取数字的典例:N位水仙花数判断及水仙花数变种)
这篇内容介绍了如何判断和生成水仙花数,水仙花数是一个n位数,其各位数字的n次方之和等于该数本身。文章首先回顾了"拨数"的概念,然后通过实例展示了如何判断三位水仙花数,并将其推广到任意位数的水仙花数。作者提供了详细的解题思路和代码示例,强调了解决这类问题时要慢下来,分步骤分析问题。最后,文章还探讨了一个水仙花数的变种问题,即数字拆分后乘积之和等于原数的情况。
1195 0
|
数据采集 前端开发 C++
Python通过matplotlib动态绘图实现中美GDP历年对比趋势动图
随着中国的各种实力的提高,经常在各种媒体上看到中国与各个国家历年的各种指标数据的对比,为了更清楚的展示历年的发展趋势,有的还做成了动图,看到中国各种指标数据的近年的不断逆袭,心中的自豪感油然而生。今天通过Python来实现matplotlib的动态绘图,将中美两国近年的GDP做个对比,展示中国GPD对美国的追赶态势,相信不久的将来中国的GDP数据将稳超美国。
540 2
|
机器学习/深度学习 算法 测试技术
PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据
PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据
|
机器学习/深度学习 算法 搜索推荐
【C++修行之道】竞赛常用库函数(sort,min和max函数,min_element和max_element、nth_element)
【C++修行之道】竞赛常用库函数(sort,min和max函数,min_element和max_element、nth_element)