Halcon 学习笔记八:颜色识别

简介: Halcon 学习笔记八:颜色识别

一、图像处理需要的知识

1.图像处理基础(rgb(hsv),gray)

2.图像灰度变换(scale_img)

3.图像基础(emphasize)

4.图像几何变换(仿射变换,极坐标变换)

5.图像分割(blob分析、边缘检测、reduce_domain)

6.图像的频域(fft_img)

7.图像形态学

8.图像复原

9.运动图像

10.图像配准(模板匹配)

二、图像处理的预处理和分割过程

二、颜色识别的方法

颜色识别的方法

1.RGB->HSV (缺点:受光照影响严重)

重点分析H分量和S分量

2.分类器识别颜色

三、例子一

打开颜色识别的例子

通过对RGB转成HSV,然后因为要选出黄色,从而去限制色度和饱和度的范围,因此可以用thresh去限制饱和度和色度的范围。最后通过blob分析,获得指定颜色的物体。

完整代码

* color_simple.hdev: segment yellow cable in HSV color space
dev_close_window ()
dev_open_window (0, 0, 640, 480, 'black', WindowHandle)
for i := 1 to 2 by 1
    * 读取图片
    read_image (Image, 'cable' + i)
    * 将RGB图根据通道拆分成三张图
    decompose3 (Image, Red, Green, Blue)
    * 将RGB转为HSV
    trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv')
    * 对饱和度阈值处理(限制饱和度范围)
    threshold (Saturation, HighSaturation, 100, 255)
    reduce_domain (Hue, HighSaturation, HueHighSaturation)
    * 对色度阈值处理(限制色度范围)
    threshold (HueHighSaturation, Yellow, 20, 50)
    * 计算连通域
    connection (Yellow, ConnectedRegions)
    * 选择形状(特征)
    select_shape_std (ConnectedRegions, SelectedRegions, 'max_area', 0)
    * 开操作
    closing_circle (SelectedRegions, Yellow, 3.5)
    * 获得目标
    reduce_domain (Image, Yellow, ImageReduced)
    dev_display (HueHighSaturation)
    dev_display (ImageReduced)
    stop ()
endfor

四、例子二

这个例子,和例子一 同样的方式,只不过这个对 好几个颜色物体进行了检测,并且输出message

完整代码

* color_fuses.hdev: classify fuses by color
dev_update_window ('off')
* ****
* step: set up fuse properties and hue ranges
* ****
FuseColors := ['Orange','Red','Blue','Yellow','Green']
FuseTypes := [5,10,15,20,30]
* HueRanges: Orange 10-30, Red 0-10...
HueRanges := [10,30,0,10,125,162,30,64,96,128]
Count := 0
dev_close_window ()
dev_open_window (0, 0, 800, 600, 'black', WH)
while (Count <= 4)
    * ****
    * step: acquire image
    * ****
    read_image (Image, 'color/color_fuses_0' + Count)
    dev_display (Image)
    set_tposition (WH, 12, 512)
    write_string (WH, 'color/color_fuses0' + Count + '.png')
    * ****
    * step: extract saturated hues
    * ****
    decompose3 (Image, Red, Green, Blue)
    trans_from_rgb (Red, Green, Blue, Hue, Saturation, Intensity, 'hsv')
    threshold (Saturation, Saturated, 60, 255)
    reduce_domain (Hue, Saturated, HueSaturated)
    for Fuse := 0 to |FuseTypes| - 1 by 1
        * ****
        * step: classify specific fuse
        * ****
        threshold (HueSaturated, CurrentFuse, HueRanges[Fuse * 2], HueRanges[Fuse * 2 + 1])
        connection (CurrentFuse, CurrentFuseConn)
        fill_up (CurrentFuseConn, CurrentFuseFill)
        select_shape (CurrentFuseFill, CurrentFuseSel, 'area', 'and', 6000, 20000)
        area_center (CurrentFuseSel, FuseArea, Row1, Column1)
        dev_set_color ('magenta')
        for i := 0 to |FuseArea| - 1 by 1
            set_tposition (WH, Row1[i], Column1[i])
            write_string (WH, FuseColors[Fuse] + ' ' + FuseTypes[Fuse] + ' Ampere')
        endfor
        set_tposition (WH, 24 * (Fuse + 1), 12)
        dev_set_color ('slate blue')
        write_string (WH, FuseColors[Fuse] + ' Fuses: ' + |FuseArea|)
    endfor
    stop ()
    Count := Count + 1
endwhile
dev_update_window ('on')

五、例子三

比如要检测橙色的糖豆

检测的结果

完整代码

dev_close_window ()
read_image (Image, 'C:/Users/xuheding/Desktop/图片/5.png')
dev_open_window_fit_image (Image, 0, 0, -1, -1, WindowHandle)
dev_display (Image)
decompose3 (Image, Red, Green, Blue)
trans_from_rgb (Red, Green, Blue, Hue, Saturation, intensity, 'hsv')
threshold (Hue, Regions, 4, 31)
connection (Regions, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 9486.24, 12568.8)
opening_circle (SelectedRegions, RegionOpening, 3.5)
dev_set_draw ('margin')
dev_set_line_width (3)
dev_set_color ('magenta')
dev_display (Image)
dev_display(RegionOpening)


相关文章
|
8月前
halcon的灰度变换(图像增强)
halcon的灰度变换(图像增强)
463 1
|
8月前
|
XML 算法 计算机视觉
使用OpenCV进行人脸检测和戴墨镜特效实战(附Python源码)
使用OpenCV进行人脸检测和戴墨镜特效实战(附Python源码)
363 1
|
8月前
|
编解码 对象存储 UED
[Halcon&标定] 单相机标定
[Halcon&标定] 单相机标定
286 1
|
8月前
|
算法 计算机视觉
[Halcon&图像] 图像滤波算法原理
[Halcon&图像] 图像滤波算法原理
266 1
|
8月前
|
算法 数据挖掘
[Halcon&图像] 阈值分割算法拓展
[Halcon&图像] 阈值分割算法拓展
150 1
|
8月前
|
大数据 计算机视觉
Halcon 学习笔记三:形态学
Halcon 学习笔记三:形态学
338 0
|
8月前
|
算法
[Halcon&图像] 边缘提取算法汇总
[Halcon&图像] 边缘提取算法汇总
409 0
|
8月前
|
算法
[Halcon&图像] 图像阈值分割算法汇总
[Halcon&图像] 图像阈值分割算法汇总
212 0
|
测试技术 C#
C# halcon SubImage的使用
C# halcon SubImage的使用