需提前观看:OpenMV单颜色识别详解;
多颜色识别和单颜色识别差不多,只需要改动[thresholds[threshold_index]]这个地方
#更改之前 for blob in img.find_blobs([thresholds[threshold_index]], pixels_threshold=200, area_threshold=200, merge=True): #更改之后 for blob in img.find_blobs(thresholds, pixels_threshold=200, area_threshold=200, merge=True):
首先我查看OpenMV的官方函数介绍可知,thresholds 是一个元组列表 。[]表示是一个列表,()表示是一个元组,如果是[(),(),()]则表示这是一个元组列表。单颜色识别的时候,我们这个列表里面只有一个元组,而多颜色识别的时候,我们这个列表里面将会存放多个元组。
因为我们是彩色识别,选择的RGB565图像,所以我们的元组需要包含6个值,分别是
(L Min, L Max, A Min, A Max, B Min, B Max)。
总结,我们只需要thresholds
这一个元组列表从一个元组{()},变成多个元组{(),(),()},就可以实现从单颜色识别变成多颜色识别了。把代码如下。注意:注释掉的部分可以删除
# Single Color RGB565 Blob Tracking Example # # 这个例子展示了使用OpenMV Cam的单色RGB565跟踪。 import sensor, image, time, math #threshold_index = 0 # 0 for red, 1 for green, 2 for blue # 颜色跟踪阈值 (L Min, L Max, A Min, A Max, B Min, B Max) # 下面的阈值通常跟踪红色/绿色/蓝色的东西。您可能希望调整它们…… thresholds = [(45, 60, 1, 18, 39, 55), # generic_red_thresholds (30, 48, -21, 0, -47, -9), # generic_green_thresholds ] # generic_blue_thresholds sensor.reset()#重置感光元件,重置摄像机 sensor.set_pixformat(sensor.RGB565) #设置颜色格式为RGB565,彩色,每个像素16bit。 sensor.set_framesize(sensor.QVGA) #图像大小为QVGA sensor.skip_frames(time = 2000) #跳过n张照片,在更改设置后,跳过一些帧,等待感光元件变稳定。 sensor.set_auto_gain(False) #颜色识别必须关闭自动增益,会影响颜色识别效果 sensor.set_auto_whitebal(False) #颜色识别必须关闭白平衡,会影响颜色识别效果,导致颜色的阈值发生改变 clock = time.clock() # 只有像素大于“pixels_threshold”和面积大于“area_threshold”的区域才是 # 由下面的"find_blobs"返回。更改“pixels_threshold”和“area_threshold” # 相机的分辨率。"merge=True"合并图像中所有重叠的斑点。 while(True): clock.tick()# 追踪两个snapshots()之间经过的毫秒数. img = sensor.snapshot()#截取感光元件中的一张图片 #在img.find_blobs这个函数中,我们进行颜色识别 #roi是“感兴趣区”,是在画面的中央还是右上方或者哪里进行颜色识别。此处我们没有进行配置,默认整个图像进行识别 for blob in img.find_blobs(thresholds, pixels_threshold=200, area_threshold=200, merge=True): # 这些值依赖于blob不是循环的-否则它们将不稳定。 #if blob.elongation() > 0.5: #img.draw_edges(blob.min_corners(), color=(255,0,0)) #利用一个红色的方框,绘制出Blob的最小边界 #img.draw_line(blob.major_axis_line(), color=(0,255,0)) #利用一个绿色的线,绘制穿过最小面积矩形的最长边 #img.draw_line(blob.minor_axis_line(), color=(0,0,255)) #利用一个蓝色的线,绘制穿过最小面积矩形的最短边 # 这些值始终是稳定的。 img.draw_rectangle(blob.rect()) #用矩形标记出目标颜色区域 img.draw_cross(blob.cx(), blob.cy()) #在目标颜色区域的中心画十字形标记 # 注意- blob的旋转是唯一的0-180。 #img.draw_keypoints([(blob.cx(), blob.cy(), int(math.degrees(blob.rotation())))], size=20) #print(clock.fps()) #打印帧率