leetcode-617:合并二叉树

简介: leetcode-617:合并二叉树

题目

题目链接

给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。

你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。

示例 1:

输入: 
  Tree 1                     Tree 2                  
          1                         2                             
         / \                       / \                            
        3   2                     1   3                        
       /                           \   \                      
      5                             4   7                  
输出: 
合并后的树:
       3
      / \
     4   5
    / \   \ 
   5   4   7

注意: 合并必须从两个树的根节点开始。

解答

方法一:递归

python解法

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def mergeTrees(self, root1: TreeNode, root2: TreeNode) -> TreeNode:
        if not root1:
            return root2
        if not root2:
            return root1
        root1.val+=root2.val
        root1.left = self.mergeTrees(root1.left,root2.left)
        root1.right = self.mergeTrees(root1.right,root2.right)
        return root1

c++解法

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
        if(!root1) return root2;
        if(!root2) return root1;
        root1->val+=root2->val;
        root1->left=mergeTrees(root1->left,root2->left);
        root1->right=mergeTrees(root1->right,root2->right);
        return root1;
    }
};

java解法

class Solution {
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if(root1==null&&root2==null) return null;
        if(root1==null||root2==null) return root1!=null?root1:root2;
        root1.val+=root2.val;
        root1.left=mergeTrees(root1.left,root2.left);
        root1.right=mergeTrees(root1.right,root2.right);
        return root1;
    }
}

方法二:迭代

python解法

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def mergeTrees(self, root1: TreeNode, root2: TreeNode) -> TreeNode:
        if not root1:
            return root2
        if not root2:
            return root1
        queue = collections.deque()
        queue.append(root1)
        queue.append(root2)
        while queue:
            node1 = queue.popleft()
            node2 = queue.popleft()
      # 只对都存在的加入队列中
            if node1.left and node2.left:
                queue.append(node1.left)
                queue.append(node2.left)
            if node1.right and node2.right:
                queue.append(node1.right)
                queue.append(node2.right)
            node1.val+=node2.val
            # 只要有一个不存在,那么子树就是另一个存在的(因为返回的是root1,所以不需要考虑node1.left存在,node2.left不存在的情况)
            if not node1.left and node2.left
                node1.left = node2.left
            if not node1.right and node2.right:
                node1.right = node2.right
        return root1

c++解法

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
        if(!root1) return root2;
        if(!root2) return root1;
        queue<TreeNode*> queue;
        queue.push(root1);
        queue.push(root2);
        while(!queue.empty()){
            TreeNode* node1=queue.front();
            queue.pop();
            TreeNode* node2=queue.front();
            queue.pop();
            node1->val+=node2->val;
            if(node1->left&&node2->left){
                queue.push(node1->left);
                queue.push(node2->left);
            }
            if(node1->right&&node2->right){
                queue.push(node1->right);
                queue.push(node2->right);
            }
            if(!node1->left) node1->left=node2->left;
            if(!node1->right) node1->right=node2->right;
        }
        return root1;
    }
};


相关文章
|
5月前
|
Go 开发者 索引
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣33 / 81/ 153/154)(Go语言版)
本文深入探讨了LeetCode中四道关于「搜索旋转排序数组」的经典题目,涵盖了无重复和有重复元素的情况。通过二分查找的变形应用,文章详细解析了每道题的解题思路和Go语言实现代码。关键点包括判断有序区间、处理重复元素以及如何缩小搜索范围。文章还总结了各题的异同,并推荐了类似题目,帮助读者全面掌握二分查找在旋转数组中的应用。无论是初学者还是有经验的开发者,都能从中获得实用的解题技巧和代码实现方法。
273 14
|
6月前
|
Go
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣437 / 236 )(Go语言版)
本文深入探讨二叉树中路径与祖先问题,涵盖两道经典题目:LeetCode 437(路径总和 III)和236(最近公共祖先)。对于路径总和 III,文章分析了双递归暴力解法与前缀和优化方法,后者通过哈希表记录路径和,将时间复杂度从O(n²)降至O(n)。在最近公共祖先问题中,采用后序遍历递归查找,利用“自底向上”的思路确定最近公共祖先节点。文中详细解析代码实现与核心要点,帮助读者掌握深度追踪技巧,理解树结构中路径与节点关系的本质。这类问题在面试中高频出现,掌握其解法意义重大。
138 4
|
6月前
|
算法 Go
【LeetCode 热题100】深入理解二叉树结构变化与路径特性(力扣104 / 226 / 114 / 543)(Go语言版)
本博客深入探讨二叉树的深度计算、结构变换与路径分析,涵盖四道经典题目:104(最大深度)、226(翻转二叉树)、114(展开为链表)和543(二叉树直径)。通过递归与遍历策略(前序、后序等),解析每题的核心思路与实现方法。结合代码示例(Go语言),帮助读者掌握二叉树相关算法的精髓。下一讲将聚焦二叉树构造问题,欢迎持续关注!
159 10
|
6月前
|
存储 算法 数据可视化
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
294 10
|
6月前
|
Go 索引 Perl
【LeetCode 热题100】【二叉树构造题精讲:前序 + 中序建树 & 有序数组构造 BST】(详细解析)(Go语言版)
本文详细解析了二叉树构造的两类经典问题:通过前序与中序遍历重建二叉树(LeetCode 105),以及将有序数组转化为平衡二叉搜索树(BST,LeetCode 108)。文章从核心思路、递归解法到实现细节逐一拆解,强调通过索引控制子树范围以优化性能,并对比两题的不同构造逻辑。最后总结通用构造套路,提供进阶思考方向,帮助彻底掌握二叉树构造类题目。
319 9
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
156 6
【LeetCode 31】104.二叉树的最大深度
【LeetCode 31】104.二叉树的最大深度
82 2
【LeetCode 29】226.反转二叉树
【LeetCode 29】226.反转二叉树
88 2
【LeetCode 28】102.二叉树的层序遍历
【LeetCode 28】102.二叉树的层序遍历
69 2
|
存储 算法
二叉树进阶-学会层序遍历助你一次刷完leetcode10道题
文章深入探讨了二叉树的层序遍历方法,并展示了如何通过队列实现层序遍历的算法逻辑,同时指出掌握层序遍历技巧可以帮助解决LeetCode上的多道相关题目。
二叉树进阶-学会层序遍历助你一次刷完leetcode10道题
下一篇
开通oss服务