GPU服务器:使用Colab

简介: GPU服务器:使用Colab

1.上传数据集

在 我的云端硬盘 创建一个文件夹(如deeplearning),放入要运行的数据集,比如保存在文件夹数据集里

上传数据集

2.挂载谷歌云盘

在deeplearning 目录创建一个 .ipynb 文件,以colab方式打开。

下面进行挂载云盘

from google.colab import drive
drive.mount('/content/gdrive')

3.更改运行目录

查看一下当前运行目录

!pwd

可以看到这样的目录,所有的云端硬盘文件都在MyDrive里了

接下来打算在/content/gdrive/MyDrive/deeplearning目录,运行。

import os
os.chdir("/content/gdrive/MyDrive/deeplearning")

确认一下运行目录

!pwd

4.上传.py执行文件

这边上传了dataset.py,eval.py,file1.py,train.py4个文件。

(虽然可以在notebook上运行,但是个人习惯在本地跑通后,直接放到colab上(可以适当增加batch size,毕竟colab的gpu显存比本地显存大),因为部分notebook的代码需要变化)

5.运行

在当前目录下执行

!python train.py

等待训练就行了。

6.其他问题

6.1换成gpu

点击 代码执行程序-更改运行时类型,硬件加速器换成gpu就行

查看显卡型号和显存

!nvidia-smi

这次分配到的是一张Tesla-T4显卡,16显存(实际上就15G这样)。

接下来重复2、3、4、5操作就行了。

6.2下载数据集

毕竟梯子还是有按照流量来算的。直接上传到云端硬盘有点废流量。

先完成 .更改运行目录,把数据集的url复制进去。运行,等待下载就行了。这样就不需要从本地上传了。(下载到当前运行目录)

import urllib.request
print ("downloading with urllib")
url = 'http://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531872/%E5%9C%B0%E8%A1%A8%E5%BB%BA%E7%AD%91%E7%89%A9%E8%AF%86%E5%88%AB/train.zip'
f = urllib.request.urlopen(url)
data = f.read()
with open("train.zip", "wb") as code:
 code.write(data)

6.3解压

用python解压到当前文件

import zipfile
with zipfile.ZipFile('train.zip','r') as zzz:
    zzz.extractall()

或者用命令解压

!unzip train.zip

6.4包安装和更新

查看安装的所有包

!pip list

安装想要的包(比如:pillow)

!pip install pillow

更新包

!pip install pillow --upgrade


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
23天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置,包括CPU+GPU、FPGA等,适用于人工智能、机器学习和深度学习等计算密集型任务。本文整理了阿里云GPU服务器的优惠价格,涵盖NVIDIA A10、V100、T4等型号,提供1个月、1年和1小时的收费明细。具体规格如A10卡GN7i、V100-16G卡GN6v等,适用于不同业务场景,详情见官方页面。
118 11
|
2月前
|
人工智能 JSON Linux
利用阿里云GPU加速服务器实现pdf转换为markdown格式
随着AI模型的发展,GPU需求日益增长,尤其是个人学习和研究。直接购置硬件成本高且更新快,建议选择阿里云等提供的GPU加速型服务器。
利用阿里云GPU加速服务器实现pdf转换为markdown格式
|
3月前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
154 7
|
3月前
|
弹性计算 固态存储 Linux
阿里云服务器、轻量应用服务器、gpu云服务器收费标准与实时活动价格参考
云服务器ECS、轻量应用服务器和gpu云服务器是阿里云的主要云服务器产品,目前轻量应用服务器2核2G收费标准为60元/月,活动价格只要36元/1年或68元1年,云服务器1核1G包月收费标准最低为24.0元/月,GPU云服务器中gn6i实例4核15G配置月付1681.00/1个月起,gn6v实例8核32G配置月付3817.00/1个月起。本文为大家整理汇总了阿里云服务器、轻量应用服务器、gpu云服务器的最新收费标准与活动价格情况,以表格形式展示给大家,以供参考。
|
2月前
|
机器学习/深度学习 人工智能 编解码
阿里云GPU云服务器优惠收费标准,GPU服务器优缺点与适用场景详解
随着人工智能、大数据分析和高性能计算的发展,对计算资源的需求不断增加。GPU凭借强大的并行计算能力和高效的浮点运算性能,逐渐成为处理复杂计算任务的首选工具。阿里云提供了从入门级到旗舰级的多种GPU服务器,涵盖GN5、GN6、GN7、GN8和GN9系列,分别适用于图形渲染、视频编码、深度学习推理、训练和高性能计算等场景。本文详细介绍各系列的规格、价格和适用场景,帮助用户根据实际需求选择最合适的GPU实例。
|
3月前
|
机器学习/深度学习 人工智能 弹性计算
什么是阿里云GPU云服务器?GPU服务器优势、使用和租赁费用整理
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等多种场景。作为亚太领先的云服务提供商,阿里云的GPU云服务器具备灵活的资源配置、高安全性和易用性,支持多种计费模式,帮助企业高效应对计算密集型任务。
453 6
|
3月前
|
机器学习/深度学习 人工智能 弹性计算
阿里云GPU服务器全解析_GPU价格收费标准_GPU优势和使用说明
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等场景。作为亚太领先的云服务商,阿里云GPU云服务器具备高灵活性、易用性、容灾备份、安全性和成本效益,支持多种实例规格,满足不同业务需求。
732 2
|
4天前
|
存储 机器学习/深度学习 人工智能
2025年阿里云GPU服务器租用价格、选型策略与应用场景详解
随着AI与高性能计算需求的增长,阿里云提供了多种GPU实例,如NVIDIA V100、A10、T4等,适配不同场景。2025年重点实例中,V100实例GN6v单月3830元起,适合大规模训练;A10实例GN7i单月3213.99元起,适用于混合负载。计费模式有按量付费和包年包月,后者成本更低。针对AI训练、图形渲染及轻量级推理等场景,推荐不同配置以优化成本和性能。阿里云还提供抢占式实例、ESSD云盘等资源优化策略,支持eRDMA网络加速和倚天ARM架构,助力企业在2025年实现智能计算的效率与成本最优平衡。 (该简介为原文内容的高度概括,符合要求的字符限制。)
|
6天前
|
存储 弹性计算 人工智能
2025年阿里云企业云服务器ECS选购与配置全攻略
本文介绍了阿里云服务器的核心配置选择方法论,涵盖算力需求分析、网络与存储设计、地域部署策略三大维度。针对不同业务场景,如初创企业官网和AI模型训练平台,提供了具体配置方案。同时,详细讲解了购买操作指南及长期运维优化建议,帮助用户快速实现业务上云并确保高效运行。访问阿里云官方资源聚合平台可获取更多最新产品动态和技术支持。
|
8天前
|
弹性计算 JavaScript 前端开发
一键安装!阿里云新功能部署Nodejs环境到ECS竟然如此简单!
Node.js 是一种高效的 JavaScript 运行环境,基于 Chrome V8 引擎,支持在服务器端运行 JavaScript 代码。本文介绍如何在阿里云上一键部署 Node.js 环境,无需繁琐配置,轻松上手。前提条件包括 ECS 实例运行中且操作系统为 CentOS、Ubuntu 等。功能特点为一键安装和稳定性好,支持常用 LTS 版本。安装步骤简单:登录阿里云控制台,选择扩展程序管理页面,安装 Node.js 扩展,选择实例和版本,等待创建完成并验证安装成功。通过阿里云的公共扩展,初学者和经验丰富的开发者都能快速进入开发状态,开启高效开发之旅。

热门文章

最新文章