剑指JUC原理-19.线程安全集合(下)

简介: 剑指JUC原理-19.线程安全集合

剑指JUC原理-19.线程安全集合(上):https://developer.aliyun.com/article/1413693


JDK 8 ConcurrentHashMap


// 默认为 0
// 当初始化时, 为 -1
// 当扩容时, 为 -(1 + 扩容线程数)
// 当初始化或扩容完成后,为 下一次的扩容的阈值大小
private transient volatile int sizeCtl;
// 整个 ConcurrentHashMap 就是一个 Node[]
static class Node<K,V> implements Map.Entry<K,V> {}
// hash 表
transient volatile Node<K,V>[] table;
// 扩容时的 新 hash 表
private transient volatile Node<K,V>[] nextTable;
// 扩容时如果某个 bin 迁移完毕, 用 ForwardingNode 作为旧 table bin 的头结点
// 主要用在扩容的时候
static final class ForwardingNode<K,V> extends Node<K,V> {}
// 用在 compute 以及 computeIfAbsent 时, 用来占位, 计算完成后替换为普通 Node
static final class ReservationNode<K,V> extends Node<K,V> {}
// 作为 treebin 的头节点, 存储 root 和 first
// 红黑树节点
static final class TreeBin<K,V> extends Node<K,V> {}
// 作为 treebin 的节点, 存储 parent, left, right
static final class TreeNode<K,V> extends Node<K,V> {}

ForwardingNode 这个是从后往前处理,处理完了就会在对应的下标 加一个头结点 fnode

如果扩容过程中,去get,如果是fnode的,那么就会去新数组中去获取


转换红黑树,当链表长度超过8的时候,会考虑转换,但是要满足一个前提就是 数组长度超过64,否则只会执行扩容操作。因为扩容能够有效的减少链表的长度。


重要方法


// 获取 Node[] 中第 i 个 Node
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i)
// cas 修改 Node[] 中第 i 个 Node 的值, c 为旧值, v 为新值
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v)
// 直接修改 Node[] 中第 i 个 Node 的值, v 为新值
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v)


构造器分析


可以看到实现了懒惰初始化,在构造方法中仅仅计算了 table 的大小,以后在第一次使用时才会真正创建

// 初始容量 负载因子 并发度
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
    // 如果初始容量小于并发度的时候 将初始容量改成 并发度,也就是最起码要保持到并发度这么大
        if (initialCapacity < concurrencyLevel) // Use at least as many bins
            initialCapacity = concurrencyLevel; // as estimated threads
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        // tableSizeFor 仍然是保证计算的大小是 2^n, 即 16,32,64 ... 
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
                MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    // 1.8中实现了懒惰初始化,而1.7中会在构造方法中创建了,不管你用不用,都会占用内存空间。
    }


get 流程


可以看到,整个get中没有任何的锁,所以这也是并发度高的一个地方

public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        // spread 方法能确保返回结果是正数
        int h = spread(key.hashCode());
    // tab创建好了并且里面是有元素的
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (e = tabAt(tab, (n - 1) & h)) != null) {
            // 获取 Node[] 中第 i 个 Node  定位到桶下标,看看是不是为空,如果不为空?继续比较头节点的hash码是不是等于key的hash码
            // 如果头结点已经是要查找的 key
            if ((eh = e.hash) == h) {
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            // hash 为负数表示该 bin 在扩容中或是 treebin, 这时调用 find 方法来查找
            // 扩容中会变成 fnode 对应的取值就是负数
            else if (eh < 0)
                return (p = e.find(h, key)) != null ? p.val : null;
            // 正常遍历链表, 用 equals 比较
            while ((e = e.next) != null) {
                if (e.hash == h &&
                        ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }


put 流程


以下数组简称(table),链表简称(bin)

  public V put(K key, V value) {
        return putVal(key, value, false);
        // onlyIfAbsent如果是false,那么每次都会用新值替换掉旧值
    }
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        // 其中 spread 方法会综合高位低位, 具有更好的 hash 性
        int hash = spread(key.hashCode());
        int binCount = 0;
        // 死循环
        for (Node<K,V>[] tab = table;;) {
            // f 是链表头节点
            // fh 是链表头结点的 hash
            // i 是链表在 table 中的下标
            Node<K,V> f; int n, i, fh;
            // 要创建 table
            if (tab == null || (n = tab.length) == 0)
                // 初始化 table 使用了 cas, 无需 synchronized 创建成功, 进入下一轮循环
                // 因为是懒惰初始化的,所以直到现在才开始创建 初始化使用cas 创建,其它失败得再次进入循环,没有用syn 我们得线程并没有被阻塞住
                tab = initTable();
                // 要创建链表头节点
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                // 添加链表头使用了 cas, 无需 synchronized
                // 用cas将头节点加进去,如果加入失败了,继续循环
                if (casTabAt(tab, i, null,
                        new Node<K,V>(hash, key, value, null)))
                    break;
            }
            // 帮忙扩容
            // 其实就是看你的头结点是不是 ForwardingNode,其对应得MOVED是一个负数
            else if ((fh = f.hash) == MOVED)
                // 帮忙之后, 进入下一轮循环
                // 锁住当前的链表,帮助去扩容
                tab = helpTransfer(tab, f);
            // 能进入这个else,说明 table既不处于扩容中,也不是处于table的初始化过程中,而且这时肯定发生了锁下标的冲突
            else {
                V oldVal = null;
                // 锁住链表头节点
                // 并没有锁住整个tab,而是锁住这个桶链表的头节点
                synchronized (f) {
                    // 再次确认链表头节点没有被移动
                    if (tabAt(tab, i) == f) {
                        // 链表
                        // 链表的头节点hash码大于等于 0 
                        if (fh >= 0) {
                            binCount = 1;
                            // 遍历链表
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
// 找到相同的 key
                                if (e.hash == hash &&
                                        ((ek = e.key) == key ||
                                                (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    // 更新
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                // 已经是最后的节点了, 新增 Node, 追加至链表尾
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                            value, null);
                                    break;
                                }
                            }
                        }
                        // 红黑树
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            // putTreeVal 会看 key 是否已经在树中, 是, 则返回对应的 TreeNode
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                    value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                    // 释放链表头节点的锁
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        // 如果链表长度 >= 树化阈值(8), 进行链表转为红黑树
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        // 增加 size 计数
        addCount(1L, binCount);
        return null;
    }
    private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        // 这个hash有没有被创建
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0)
                // 让出cpu的使用权,如果cpu的时间片没有其它线程了,那么还是会分给这个线程,只是让他不至于充分利用cpu,少占用一点cpu的时间。
                Thread.yield();
                // 尝试将 sizeCtl 设置为 -1(表示初始化 table)
            // 而其它的线程,再次进入循环,首先 不小于0了,其次,之前的 sc也已经变了,cas失败,再次循环的时候,发现 tab已经不为空了,结束循环
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                // 获得锁, 创建 table, 这时其它线程会在 while() 循环中 yield 直至 table 创建
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        // 计算出下一次要扩容的阈值
                        sc = n - (n >>> 2);
                    }
                } finally {
                    // 计算出下一次要扩容的阈值
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }
    // check 是之前 binCount 的个数
  // 运用了 longadder 的思想
    private final void addCount(long x, int check) {
        CounterCell[] as; long b, s;
        if (
            // 已经有了 counterCells, 向 cell 累加
            // 累加单元数组不为空
                (as = counterCells) != null ||
                        // 还没有, 向 baseCount 累加
            // 一个基础数值累加
                        !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)
        ) {
            CounterCell a; long v; int m;
            boolean uncontended = true;
            if (
                // 还没有 counterCells
                    as == null || (m = as.length - 1) < 0 ||
                            // 还没有 cell
                            (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                            // cell cas 增加计数失败
                            !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
            ) {
                // 创建累加单元数组和cell, 累加重试
                fullAddCount(x, uncontended);
                return;
            }
            if (check <= 1)
                return;
            // 获取元素个数
            s = sumCount();
        }
        if (check >= 0) {
            Node<K,V>[] tab, nt; int n, sc;
            // 看看元素的个数是否大于扩容的阈值
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                    (n = tab.length) < MAXIMUM_CAPACITY) {
                int rs = resizeStamp(n);
                if (sc < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                            sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                            transferIndex <= 0)
                        break;
                    // newtable 已经创建了,帮忙扩容
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        // 首次调用,因为是懒惰初始化的,所以还没有创建
                        transfer(tab, nt);
                }
                // 需要扩容,这时 newtable 未创建
                else if (U.compareAndSwapInt(this, SIZECTL, sc,
                        (rs << RESIZE_STAMP_SHIFT) + 2))
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }


size 计算流程


size 计算实际发生在 put,remove 改变集合元素的操作之中


  • 没有竞争发生,向 baseCount 累加计数
  • 有竞争发生,新建 counterCells,向其中的一个 cell 累加计数


counterCells 初始有两个 cell


如果计数竞争比较激烈,会创建新的 cell 来累加计数

  public int size() {
        long n = sumCount();
        return ((n < 0L) ? 0 :
                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
                        (int)n);
    }
    final long sumCount() {
        CounterCell[] as = counterCells; CounterCell a;
        // 将 baseCount 计数与所有 cell 计数累加
        long sum = baseCount;
        if (as != null) {
            for (int i = 0; i < as.length; ++i) {
                if ((a = as[i]) != null)
                    sum += a.value;
            }
        }
        return sum;
    }


transfer


private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                // 将原有的扩容两倍
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            else if ((f = tabAt(tab, i)) == null)
                // 处理完了,将链表设置成 ForwardingNode
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                // 如果这个链表头是有元素的,将链表锁住,然后进行处理
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        // 普通节点
                        if (fh >= 0) {
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        // 树节点的搬迁逻辑
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }


JDK 7 ConcurrentHashMap


它维护了一个 segment 数组(分段的意思),每个 segment(继承自ReentrantLock) 对应一把锁


  • 优点:如果多个线程访问不同的 segment,实际是没有冲突的,这与 jdk8 中是类似的
  • 缺点:Segments 数组默认大小为16,这个容量初始化指定后就不能改变了,并且不是懒惰初始化(jdk8中,随着扩容,链表的个数也会越来越多,所以这个并发度会随着你的这个容量增大而增大)


构造器分析


public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // ssize 必须是 2^n, 即 2, 4, 8, 16 ... 表示了 segments 数组的大小
        int sshift = 0;
        int ssize = 1;
        while (ssize < concurrencyLevel) {
            ++sshift;
            ssize <<= 1;
        }
        // segmentShift 默认是 32 - 4 = 28
        this.segmentShift = 32 - sshift;
        // segmentMask 默认是 15 即 0000 0000 0000 1111
        this.segmentMask = ssize - 1;
    // 为了将来 get 或者 put 一个key的时候,他好确定这个key 在 segment中的那个元素
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        int c = initialCapacity / ssize;
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // 创建 segments and segments[0]
        Segment<K,V> s0 =
                new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                        (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
        this.segments = ss;
    }

可以看到 ConcurrentHashMap 没有实现懒惰初始化,空间占用不友好


其中 this.segmentShift 和 this.segmentMask 的作用是决定将 key 的 hash 结果匹配到哪个 segment


例如,根据某一 hash 值求 segment 位置,先将高位向低位移动 this.segmentShift 位

结果再与 this.segmentMask 做位于运算,最终得到 1010 即下标为 10 的 segment


put 流程


  public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        // 计算出 segment 下标
        int j = (hash >>> segmentShift) & segmentMask;
        // 获得 segment 对象, 判断是否为 null, 是则创建该 segment
        if ((s = (Segment<K,V>)UNSAFE.getObject
                (segments, (j << SSHIFT) + SBASE)) == null) {
            // 这时不能确定是否真的为 null, 因为其它线程也发现该 segment 为 null,
            // 因此在 ensureSegment 里用 cas 方式保证该 segment 安全性
            s = ensureSegment(j);
        }
        // 进入 segment 的put 流程
        return s.put(key, hash, value, false);
    }

segment 继承了可重入锁(ReentrantLock),它的 put 方法为

  final V put(K key, int hash, V value, boolean onlyIfAbsent) {
        // 尝试加锁
        HashEntry<K,V> node = tryLock() ? null :
                // 如果不成功, 进入 scanAndLockForPut 流程
                // 如果是多核 cpu 最多 tryLock 64 次, 进入 lock 流程
                // 在尝试期间, 还可以顺便看该节点在链表中有没有, 如果没有顺便创建出来
                scanAndLockForPut(key, hash, value);
        // 执行到这里 segment 已经被成功加锁, 可以安全执行
        V oldValue;
        try {
            HashEntry<K,V>[] tab = table;
            int index = (tab.length - 1) & hash;
            // 找到链表头结点
            HashEntry<K,V> first = entryAt(tab, index);
            for (HashEntry<K,V> e = first;;) {
                if (e != null) {
                    // 更新
                    K k;
                    if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        if (!onlyIfAbsent) {
                            e.value = value;
                            ++modCount;
                        }
                        break;
                    }
                    e = e.next;
                }
                else {
                    // 新增
                    // 1) 之前等待锁时, node 已经被创建, next 指向链表头
                    if (node != null)
                        node.setNext(first);
                    else
                        // 2) 创建新 node
                        node = new HashEntry<K,V>(hash, key, value, first);
                    int c = count + 1;
                    // 3) 扩容
                    // 超过了阈值
                    if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                        rehash(node);
                    else
                        // 将 node 作为链表头
                        setEntryAt(tab, index, node);
                    ++modCount;
                    count = c;
                    oldValue = null;
                    break;
                }
            }
        } finally {
            unlock();
        }
        return oldValue;
    }


rehash 流程


发生在 put 中,因为此时已经获得了锁,因此 rehash 时不需要考虑线程安全

private void rehash(HashEntry<K,V> node) {
        HashEntry<K,V>[] oldTable = table;
        int oldCapacity = oldTable.length;
    // 移位
        int newCapacity = oldCapacity << 1;
        threshold = (int)(newCapacity * loadFactor);
        HashEntry<K,V>[] newTable =
                (HashEntry<K,V>[]) new HashEntry[newCapacity];
        int sizeMask = newCapacity - 1;
        for (int i = 0; i < oldCapacity ; i++) {
            HashEntry<K,V> e = oldTable[i];
            if (e != null) {
                HashEntry<K,V> next = e.next;
                int idx = e.hash & sizeMask;
                if (next == null) // Single node on list
                    newTable[idx] = e;
                else { // Reuse consecutive sequence at same slot
                    HashEntry<K,V> lastRun = e;
                    int lastIdx = idx;
                    // 过一遍链表, 尽可能把 rehash 后 idx 不变的节点重用
                    for (HashEntry<K,V> last = next;
                         last != null;
                         last = last.next) {
                        int k = last.hash & sizeMask;
                        if (k != lastIdx) {
                            lastIdx = k;
                            lastRun = last;
                        }
                    }
                    newTable[lastIdx] = lastRun;
                    // 剩余节点需要新建
                    for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
                        V v = p.value;
                        int h = p.hash;
                        int k = h & sizeMask;
                        HashEntry<K,V> n = newTable[k];
                        newTable[k] = new HashEntry<K,V>(h, p.key, v, n);
                    }
                }
            }
        }
        // 扩容完成, 才加入新的节点
        int nodeIndex = node.hash & sizeMask; // add the new node
        node.setNext(newTable[nodeIndex]);
        newTable[nodeIndex] = node;
        // 替换为新的 HashEntry table
        table = newTable;
    }


get 流程


get 时并未加锁,用了 UNSAFE 方法保证了可见性,扩容过程中,get 先发生就从旧表取内容,get 后发生就从新表取内容

  public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        // u 为 segment 对象在数组中的偏移量
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        // s 即为 segment
        // 数组内元素必须使用这个来保证它的可见性 
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
                (tab = s.table) != null) {
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                    (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }


size 计算流程


  • 计算元素个数前,先不加锁计算两次,如果前后两次结果如一样,认为个数正确返回
  • 如果不一样,进行重试,重试次数超过 3,将所有 segment 锁住,重新计算个数返回


其size本身的计算就是弱一致性的。

  public int size() {
        // Try a few times to get accurate count. On failure due to
        // continuous async changes in table, resort to locking.
        final Segment<K,V>[] segments = this.segments;
        int size;
        boolean overflow; // true if size overflows 32 bits
        long sum; // sum of modCounts
        long last = 0L; // previous sum
        int retries = -1; // first iteration isn't retry
        try {
            for (;;) {
                if (retries++ == RETRIES_BEFORE_LOCK) {
                    // 超过重试次数, 需要创建所有 segment 并加锁
                    for (int j = 0; j < segments.length; ++j)
                        ensureSegment(j).lock(); // force creation
                }
                sum = 0L;
                size = 0;
                overflow = false;
                for (int j = 0; j < segments.length; ++j) {
                    Segment<K,V> seg = segmentAt(segments, j);
                    if (seg != null) {
                        sum += seg.modCount;
                        int c = seg.count;
                        if (c < 0 || (size += c) < 0)
                            overflow = true;
                    }
                }
                if (sum == last)
                    break;
                last = sum;
            }
        } finally {
            if (retries > RETRIES_BEFORE_LOCK) {
                for (int j = 0; j < segments.length; ++j)
                    segmentAt(segments, j).unlock();
            }
        }
        return overflow ? Integer.MAX_VALUE : size;
    }


BlockingQueue


LinkedBlockingQueue 原理


基本的入队出队


public class LinkedBlockingQueue<E> extends AbstractQueue<E>
        implements BlockingQueue<E>, java.io.Serializable {
    static class Node<E> {
        E item;
        /**
         * 下列三种情况之一
         * - 真正的后继节点
         * - 自己, 发生在出队时
         * - null, 表示是没有后继节点, 是最后了
         */
        Node<E> next;
        Node(E x) { item = x; }
    }
}

初始化链表 last = head = new Node(null); Dummy 节点用来占位,item 为 null

当一个节点入队 last = last.next = node;

再来一个节点入队 last = last.next = node;

出队

Node<E> h = head;
Node<E> first = h.next;
h.next = h; // help GC
head = first;
E x = first.item;
first.item = null;
return x;

h = head

first = h.next

h.next = h


指向自己,安全的进行垃圾回收

head = first

E x = first.item;
first.item = null;
return x;


加锁分析


高明之处在于用了两把锁和 dummy 节点(站位节点)


  • 用一把锁,同一时刻,最多只允许有一个线程(生产者或消费者,二选一)执行
  • 用两把锁,同一时刻,可以允许两个线程同时(一个生产者与一个消费者)执行


消费者与消费者线程仍然串行


生产者与生产者线程仍然串行


线程安全分析


  • 当节点总数大于 2 时(包括 dummy 节点),putLock 保证的是 last 节点的线程安全,takeLock 保证的是head 节点的线程安全。两把锁保证了入队和出队没有竞争
  • 当节点总数等于 2 时(即一个 dummy 节点,一个正常节点)这时候,仍然是两把锁锁两个对象,不会竞争
  • 当节点总数等于 1 时(就一个 dummy 节点)这时 take 线程会被 notEmpty 条件阻塞,有竞争,会阻塞
// 用于 put(阻塞) offer(非阻塞)
private final ReentrantLock putLock = new ReentrantLock();
// 用户 take(阻塞) poll(非阻塞)
private final ReentrantLock takeLock = new ReentrantLock();

put 操作

public void put(E e) throws InterruptedException {
        if (e == null) throw new NullPointerException();
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        // count 用来维护元素计数
        final AtomicInteger count = this.count;
        putLock.lockInterruptibly();
        try {
            // 满了等待
            while (count.get() == capacity) {
                // 倒过来读就好: 等待 notFull
                notFull.await();
            }
            // 有空位, 入队且计数加一
            enqueue(node);
            c = count.getAndIncrement();
            // 在这里和我们之前自己做的 使用signalall唤醒是不同的,都是使用signal来唤醒,使用signal 而不使用signalall的原因就是,signalall一次会唤醒多个,这样的话 最终可能就一个会去执行,然后又陷入等待,会引起很多不必要的竞争
            // 除了自己 put 以外, 队列还有空位, 由自己叫醒其他 put 线程
            if (c + 1 < capacity)
                notFull.signal();
        } finally {
            putLock.unlock();
        }
        // 如果队列中有一个元素, 叫醒 take 线程 是为了确保在第一个元素被添加到队列中时,可以及时通知等待的take线程进行取出操作。这样可以避免take线程一直处于等待状态,提高了程序的效率。
        if (c == 0)
            // 这里调用的是 notEmpty.signal() 而不是 notEmpty.signalAll() 是为了减少竞争
            signalNotEmpty();
    }

take 操作

public E take() throws InterruptedException {
        E x;
        int c = -1;
        final AtomicInteger count = this.count;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lockInterruptibly();
        try {
            while (count.get() == 0) {
                notEmpty.await();
            }
            x = dequeue();
            c = count.getAndDecrement();
            if (c > 1)
                notEmpty.signal();
        } finally {
            takeLock.unlock();
        }
        // 如果队列中只有一个空位时, 叫醒 put 线程
        // 如果有多个线程进行出队, 第一个线程满足 c == capacity, 但后续线程 c < capacity
        if (c == capacity)
            // 这里调用的是 notFull.signal() 而不是 notFull.signalAll() 是为了减少竞争
            signalNotFull()
        return x;
    }


CopyOnWriteArrayList


CopyOnWriteArraySet 是它的马甲 底层实现采用了 写入时拷贝 的思想,增删改操作会将底层数组拷贝一份,更改操作在新数组上执行,这时不影响其它线程的并发读,读写分离。 以新增为例:

 public boolean add(E e) {
        synchronized (lock) {
            // 获取旧的数组
            Object[] es = getArray();
            int len = es.length;
            // 拷贝新的数组(这里是比较耗时的操作,但不影响其它读线程)
            es = Arrays.copyOf(es, len + 1);
            // 添加新元素
            es[len] = e;
            // 替换旧的数组
            setArray(es);
            return true;
        }
    }

这里的源码版本是 Java 11,在 Java 1.8 中使用的是可重入锁而不是 synchronized


其它读操作并未加锁,例如:

public void forEach(Consumer<? super E> action) {
        Objects.requireNonNull(action);
        for (Object x : getArray()) {
            @SuppressWarnings("unchecked") E e = (E) x;
            action.accept(e);
        }
    }

适合『读多写少』的应用场景


get 弱一致性

时间点 操作
1 Thread-0 getArray()
2 Thread-1 getArray()
3 Thread-1 setArray(arrayCopy)
4 Thread-0 array[index]

不容易测试,但问题确实存在


迭代器弱一致性


CopyOnWriteArrayList<Integer> list = new CopyOnWriteArrayList<>();
list.add(1);
list.add(2);
list.add(3);
Iterator<Integer> iter = list.iterator();
new Thread(() -> {
 list.remove(0);
 System.out.println(list);
}).start();
sleep1s();
while (iter.hasNext()) {
 System.out.println(iter.next());
}

不要觉得弱一致性就不好


  • 数据库的 MVCC 都是弱一致性的表现
  • 并发高和一致性是矛盾的,需要权衡
目录
相关文章
|
3月前
|
存储 安全 Java
【Java集合类面试二十五】、有哪些线程安全的List?
线程安全的List包括Vector、Collections.SynchronizedList和CopyOnWriteArrayList,其中CopyOnWriteArrayList通过复制底层数组实现写操作,提供了最优的线程安全性能。
|
10天前
|
安全 Java
Java多线程集合类
本文介绍了Java中线程安全的问题及解决方案。通过示例代码展示了使用`CopyOnWriteArrayList`、`CopyOnWriteArraySet`和`ConcurrentHashMap`来解决多线程环境下集合操作的线程安全问题。这些类通过不同的机制确保了线程安全,提高了并发性能。
|
2月前
|
存储 缓存 Java
什么是线程池?从底层源码入手,深度解析线程池的工作原理
本文从底层源码入手,深度解析ThreadPoolExecutor底层源码,包括其核心字段、内部类和重要方法,另外对Executors工具类下的四种自带线程池源码进行解释。 阅读本文后,可以对线程池的工作原理、七大参数、生命周期、拒绝策略等内容拥有更深入的认识。
139 29
什么是线程池?从底层源码入手,深度解析线程池的工作原理
|
1月前
|
Java C++
【多线程】JUC的常见类,Callable接口,ReentranLock,Semaphore,CountDownLatch
【多线程】JUC的常见类,Callable接口,ReentranLock,Semaphore,CountDownLatch
33 0
|
2月前
|
存储 缓存 安全
【Java面试题汇总】多线程、JUC、锁篇(2023版)
线程和进程的区别、CAS的ABA问题、AQS、哪些地方使用了CAS、怎么保证线程安全、线程同步方式、synchronized的用法及原理、Lock、volatile、线程的六个状态、ThreadLocal、线程通信方式、创建方式、两种创建线程池的方法、线程池设置合适的线程数、线程安全的集合?ConcurrentHashMap、JUC
【Java面试题汇总】多线程、JUC、锁篇(2023版)
|
2月前
|
监控 Java 调度
【Java学习】多线程&JUC万字超详解
本文详细介绍了多线程的概念和三种实现方式,还有一些常见的成员方法,CPU的调动方式,多线程的生命周期,还有线程安全问题,锁和死锁的概念,以及等待唤醒机制,阻塞队列,多线程的六种状态,线程池等
134 6
【Java学习】多线程&JUC万字超详解
|
1月前
|
Java 编译器 程序员
【多线程】synchronized原理
【多线程】synchronized原理
59 0
|
1月前
|
Java 应用服务中间件 API
nginx线程池原理
nginx线程池原理
34 0
|
2月前
|
存储 缓存 Java
JAVA并发编程系列(11)线程池底层原理架构剖析
本文详细解析了Java线程池的核心参数及其意义,包括核心线程数量(corePoolSize)、最大线程数量(maximumPoolSize)、线程空闲时间(keepAliveTime)、任务存储队列(workQueue)、线程工厂(threadFactory)及拒绝策略(handler)。此外,还介绍了四种常见的线程池:可缓存线程池(newCachedThreadPool)、定时调度线程池(newScheduledThreadPool)、单线程池(newSingleThreadExecutor)及固定长度线程池(newFixedThreadPool)。
|
3月前
|
存储 NoSQL Java
线程池的原理与C语言实现
【8月更文挑战第22天】线程池是一种多线程处理框架,通过复用预创建的线程来高效地处理大量短暂或临时任务,提升程序性能。它主要包括三部分:线程管理器、工作队列和线程。线程管理器负责创建与管理线程;工作队列存储待处理任务;线程则执行任务。当提交新任务时,线程管理器将其加入队列,并由空闲线程处理。使用线程池能减少线程创建与销毁的开销,提高响应速度,并能有效控制并发线程数量,避免资源竞争。这里还提供了一个简单的 C 语言实现示例。