问题提出
有如下需求,保证 account.withdraw 取款方法的线程安全
import java.util.ArrayList; import java.util.List; interface Account { // 获取余额 Integer getBalance(); // 取款 void withdraw(Integer amount); /** * 方法内会启动 1000 个线程,每个线程做 -10 元 的操作 * 如果初始余额为 10000 那么正确的结果应当是 0 */ static void demo(Account account) { List<Thread> ts = new ArrayList<>(); long start = System.nanoTime(); for (int i = 0; i < 1000; i++) { ts.add(new Thread(() -> { account.withdraw(10); })); } ts.forEach(Thread::start); ts.forEach(t -> { try { t.join(); } catch (InterruptedException e) { e.printStackTrace(); } }); long end = System.nanoTime(); System.out.println(account.getBalance() + " cost: " + (end-start)/1000_000 + " ms"); } }
原有实现并不是线程安全的
class AccountUnsafe implements Account { private Integer balance; public AccountUnsafe(Integer balance) { this.balance = balance; } @Override public Integer getBalance() { return balance; } @Override public void withdraw(Integer amount) { balance -= amount; } }
执行测试代码
public static void main(String[] args) { Account.demo(new AccountUnsafe(10000)); }
某次的执行结果
330 cost: 306 ms
为什么不安全
withdraw 方法
public void withdraw(Integer amount) { balance -= amount; }
原因是因为 会出现指令交错的情况,因为正常的逻辑,比如一个i–的操作会分为四步,1.先获取值、2.获取要减的数、3.相减、4.写回。正常来说,如果所有的都按照这个顺序来执行的话不可能出现线程安全的问题,但是实际上不是这样的,多线程的时候,或许可以保证有序性,但是没办法保证指令交错,所以导致 可能的顺序是 11234234,这样就会出现线程不安全的情况拉。
解决思路-锁
首先想到的是给 Account 对象加锁(但是太笨重了)
class AccountUnsafe implements Account { private Integer balance; public AccountUnsafe(Integer balance) { this.balance = balance; } @Override public synchronized Integer getBalance() { return balance; } @Override public synchronized void withdraw(Integer amount) { balance -= amount; } }
结果为
0 cost: 399 ms
解决思路-无锁
class AccountSafe implements Account { private AtomicInteger balance; public AccountSafe(Integer balance) { this.balance = new AtomicInteger(balance); } @Override public Integer getBalance() { return balance.get(); } @Override public void withdraw(Integer amount) { while (true) { int prev = balance.get();// 获取余额的最新值 int next = prev - amount;// 要修改的余额 if (balance.compareAndSet(prev, next)) { // 真正修改,如果成功,结束循环,如果失败,继续循环 break; } } // 可以简化为下面的方法 // balance.addAndGet(-1 * amount); } }
执行测试代码
public static void main(String[] args) { Account.demo(new AccountSafe(10000)); }
某次的执行结果
0 cost: 302 ms
是否真的无锁呢?
我们通过 Java 中的 AtomicInteger类中的 getAndIncrement()来看下 CAS 底层是怎么实现的。
public final int getAndIncrement() { return unsafe.getAndAddInt(this, valueOffset, 1); }
可以看到它是调用的Unsafe类的getAndAddInt方法
public final int getAndAddInt(Object obj, long offset, int delta) { int value; do { value= this.getIntVolatile(obj, offset); } while(!this.compareAndSwapInt(obj, offset, value, value + delta)); return v; }
可以看到该方法内部是先获取到该对象的偏移量对应的值(value),然后调用 compareAndSwapInt 方法通过对比来修改该值,如果这个值和value一样,说明此过程中间没有
人修改该数据,此时可以将该地址的值改为 value+delta, 返回true,结束循环。否则,说明有人修改该地址处的值,返回false,继续下一次循环。
那么是怎么保证 compareAndSwapInt(CAS)的原子性呢?这个就由操作系统底层来提供了。
其实 CAS 的底层是 lock cmpxchg 指令(X86 架构),在单核 CPU 和多核 CPU 下都能够保证【比较-交换】的原子性。
在多核状态下,某个核执行到带 lock 的指令时,CPU 会让总线锁住,当这个核把此指令执行完毕,再开启总线。这个过程中不会被线程的调度机制所打断,保证了多个线程对内存操作的准确性,是原子的。
CAS 与 volatile
前面看到的 AtomicInteger 的解决方法,内部并没有用锁来保护共享变量的线程安全。那么它是如何实现的呢?
public void withdraw(Integer amount) { // 需要不断尝试,直到成功为止 while (true) { // 比如拿到了旧值 1000 int prev = balance.get(); // 在这个基础上 1000-10 = 990 int next = prev - amount; /* compareAndSet 正是做这个检查,在 set 前,先比较 prev 与当前值 - 不一致了,next 作废,返回 false 表示失败 比如,别的线程已经做了减法,当前值已经被减成了 990 那么本线程的这次 990 就作废了,进入 while 下次循环重试 - 一致,以 next 设置为新值,返回 true 表示成功 */ if (balance.compareAndSet(prev, next)) { break; } } }
其中的关键是 compareAndSet,它的简称就是 CAS (也有 Compare And Swap 的说法),它必须是原子操作。
其中,左侧的两个cas操作都失败了。
慢动作分析
@Slf4j public class SlowMotion { public static void main(String[] args) { AtomicInteger balance = new AtomicInteger(10000); int mainPrev = balance.get(); log.debug("try get {}", mainPrev); new Thread(() -> { sleep(1000); int prev = balance.get(); balance.compareAndSet(prev, 9000); log.debug(balance.toString()); }, "t1").start(); sleep(2000); log.debug("try set 8000..."); boolean isSuccess = balance.compareAndSet(mainPrev, 8000); log.debug("is success ? {}", isSuccess); if(!isSuccess){ mainPrev = balance.get(); log.debug("try set 8000..."); isSuccess = balance.compareAndSet(mainPrev, 8000); log.debug("is success ? {}", isSuccess); } } private static void sleep(int millis) { try { Thread.sleep(millis); } catch (InterruptedException e) { e.printStackTrace(); } } }
输出结果
2023-10-13 11:28:37.134 [main] try get 10000 2023-10-13 11:28:38.154 [t1] 9000 2023-10-13 11:28:39.154 [main] try set 8000... 2023-10-13 11:28:39.154 [main] is success ? false 2023-10-13 11:28:39.154 [main] try set 8000... 2023-10-13 11:28:39.154 [main] is success ? true
volatile
AtomicInteger 源码里面 应用到了 volatile
获取共享变量时,为了保证该变量的可见性,需要使用 volatile 修饰。
它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作 volatile 变量都是直接操作主存。即一个线程对 volatile 变量的修改,对另一个线程可见。
注意:
volatile 仅仅保证了共享变量的可见性,让其它线程能够看到最新值,但不能解决指令交错问题(不能保证原子性)
CAS 必须借助 volatile 才能读取到共享变量的最新值来实现【比较并交换】的效果
为什么无锁效率高
无锁情况下,即使重试失败,线程始终在高速运行,没有停歇,而 synchronized 会让线程在没有获得锁的时候,发生上下文切换,进入阻塞。打个比喻
线程就好像高速跑道上的赛车,高速运行时,速度超快,一旦发生上下文切换,就好比赛车要减速、熄火,等被唤醒又得重新打火、启动、加速… 恢复到高速运行,代价比较大。(cas 不会让线程停下来,while(true) 不停的循环)
但无锁情况下,因为线程要保持运行,需要额外 CPU 的支持,CPU 在这里就好比高速跑道,没有额外的跑道,线程想高速运行也无从谈起,虽然不会进入阻塞,但由于没有分到时间片,仍然会进入可运行状态,还是会导致上下文切换。(在多核cpu下能发挥出优势,虽然没有陷入block阻塞,但是没有分到时间片,还是要上下文切换)
CAS 的特点
结合 CAS 和 volatile 可以实现无锁并发,适用于线程数少、多核 CPU 的场景下。
- CAS 是基于乐观锁的思想:最乐观的估计,不怕别的线程来修改共享变量,就算改了也没关系,我吃亏点再重试呗。
- synchronized 是基于悲观锁的思想:最悲观的估计,得防着其它线程来修改共享变量,我上了锁你们都别想改,我改完了解开锁,你们才有机会。
- CAS 体现的是无锁并发、无阻塞并发,请仔细体会这两句话的意思,因为没有使用 synchronized,所以线程不会陷入阻塞,这是效率提升的因素之一、但如果竞争激烈,可以想到重试必然频繁发生,反而效率会受影响
原子整数
J.U.C 并发包提供了:
- AtomicBoolean
- AtomicInteger
- AtomicLong
以 AtomicInteger 为例
AtomicInteger i = new AtomicInteger(0); // 获取并自增(i = 0, 结果 i = 1, 返回 0),类似于 i++ System.out.println(i.getAndIncrement()); // 自增并获取(i = 1, 结果 i = 2, 返回 2),类似于 ++i System.out.println(i.incrementAndGet()); // 自减并获取(i = 2, 结果 i = 1, 返回 1),类似于 --i System.out.println(i.decrementAndGet()); // 获取并自减(i = 1, 结果 i = 0, 返回 1),类似于 i-- System.out.println(i.getAndDecrement()); // 获取并加值(i = 0, 结果 i = 5, 返回 0) System.out.println(i.getAndAdd(5)); // 加值并获取(i = 5, 结果 i = 0, 返回 0) System.out.println(i.addAndGet(-5));
以getAndIncrement 源码为例
具体来说,这个方法会先读取对象var1上偏移量为var2的整数值,然后将其与给定的var4相加,在尝试使用CAS(Compare And Swap)操作将它们的和写回到这个偏移量上存储的值中。如果CAS操作成功,那么方法返回更新前的偏移量上存储的值,否则就重复执行这个过程,直到CAS操作成功为止。
// 获取并更新(i = 0, p 为 i 的当前值, 结果 i = -2, 返回 0) // 其中函数中的操作能保证原子,但函数需要无副作用 System.out.println(i.getAndUpdate(p -> p - 2)); // 更新并获取(i = -2, p 为 i 的当前值, 结果 i = 0, 返回 0) // 其中函数中的操作能保证原子,但函数需要无副作用 System.out.println(i.updateAndGet(p -> p + 2));
剑指JUC原理-9.Java无锁模型(下):https://developer.aliyun.com/article/1413636