剑指JUC原理-9.Java无锁模型(上)

简介: 剑指JUC原理-9.Java无锁模型

问题提出


有如下需求,保证 account.withdraw 取款方法的线程安全

import java.util.ArrayList;
import java.util.List;
interface Account {
    // 获取余额
    Integer getBalance();
    // 取款
    void withdraw(Integer amount);
    /**
     * 方法内会启动 1000 个线程,每个线程做 -10 元 的操作
     * 如果初始余额为 10000 那么正确的结果应当是 0
     */
    static void demo(Account account) {
        List<Thread> ts = new ArrayList<>();
        long start = System.nanoTime();
        for (int i = 0; i < 1000; i++) {
            ts.add(new Thread(() -> {
                account.withdraw(10);
            }));
        }
        ts.forEach(Thread::start);
        ts.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        long end = System.nanoTime();
        System.out.println(account.getBalance()
                + " cost: " + (end-start)/1000_000 + " ms");
    }
}

原有实现并不是线程安全的

class AccountUnsafe implements Account {
    private Integer balance;
    public AccountUnsafe(Integer balance) {
        this.balance = balance;
    }
    @Override
    public Integer getBalance() {
        return balance;
    }
    @Override
    public void withdraw(Integer amount) {
        balance -= amount;
    }
}

执行测试代码

public static void main(String[] args) {
        Account.demo(new AccountUnsafe(10000));
    }

某次的执行结果

330 cost: 306 ms


为什么不安全


withdraw 方法

public void withdraw(Integer amount) {
  balance -= amount;
}

原因是因为 会出现指令交错的情况,因为正常的逻辑,比如一个i–的操作会分为四步,1.先获取值、2.获取要减的数、3.相减、4.写回。正常来说,如果所有的都按照这个顺序来执行的话不可能出现线程安全的问题,但是实际上不是这样的,多线程的时候,或许可以保证有序性,但是没办法保证指令交错,所以导致 可能的顺序是 11234234,这样就会出现线程不安全的情况拉。


解决思路-锁


首先想到的是给 Account 对象加锁(但是太笨重了)

class AccountUnsafe implements Account {
    private Integer balance;
    public AccountUnsafe(Integer balance) {
        this.balance = balance;
    }
    @Override
    public synchronized Integer getBalance() {
        return balance;
    }
    @Override
    public synchronized void withdraw(Integer amount) {
        balance -= amount;
    }
}

结果为

0 cost: 399 ms 


解决思路-无锁


class AccountSafe implements Account {
    private AtomicInteger balance;
    public AccountSafe(Integer balance) {
        this.balance = new AtomicInteger(balance);
    }
    @Override
    public Integer getBalance() {
        return balance.get();
    }
    @Override
    public void withdraw(Integer amount) {
        while (true) {
            int prev = balance.get();// 获取余额的最新值
            int next = prev - amount;// 要修改的余额
            if (balance.compareAndSet(prev, next)) { // 真正修改,如果成功,结束循环,如果失败,继续循环
                break;
            }
        }
        // 可以简化为下面的方法
        // balance.addAndGet(-1 * amount);
    }
}

执行测试代码

public static void main(String[] args) {
     Account.demo(new AccountSafe(10000));
}

某次的执行结果

0 cost: 302 ms


是否真的无锁呢?


我们通过 Java 中的 AtomicInteger类中的 getAndIncrement()来看下 CAS 底层是怎么实现的。

  public final int getAndIncrement() {
        return unsafe.getAndAddInt(this, valueOffset, 1);
    }

可以看到它是调用的Unsafe类的getAndAddInt方法

public final int getAndAddInt(Object obj, long offset, int delta) {
    int value;
    do {
        value= this.getIntVolatile(obj, offset);
    } while(!this.compareAndSwapInt(obj, offset, value, value + delta));
    return v;
}

可以看到该方法内部是先获取到该对象的偏移量对应的值(value),然后调用 compareAndSwapInt 方法通过对比来修改该值,如果这个值和value一样,说明此过程中间没有


人修改该数据,此时可以将该地址的值改为 value+delta, 返回true,结束循环。否则,说明有人修改该地址处的值,返回false,继续下一次循环。


那么是怎么保证 compareAndSwapInt(CAS)的原子性呢?这个就由操作系统底层来提供了。


其实 CAS 的底层是 lock cmpxchg 指令(X86 架构),在单核 CPU 和多核 CPU 下都能够保证【比较-交换】的原子性。


在多核状态下,某个核执行到带 lock 的指令时,CPU 会让总线锁住,当这个核把此指令执行完毕,再开启总线。这个过程中不会被线程的调度机制所打断,保证了多个线程对内存操作的准确性,是原子的。


CAS 与 volatile


前面看到的 AtomicInteger 的解决方法,内部并没有用锁来保护共享变量的线程安全。那么它是如何实现的呢?

public void withdraw(Integer amount) {
            // 需要不断尝试,直到成功为止
            while (true) {
                // 比如拿到了旧值 1000
                int prev = balance.get();
                // 在这个基础上 1000-10 = 990
                int next = prev - amount;
 /*
 compareAndSet 正是做这个检查,在 set 前,先比较 prev 与当前值
 - 不一致了,next 作废,返回 false 表示失败
 比如,别的线程已经做了减法,当前值已经被减成了 990
 那么本线程的这次 990 就作废了,进入 while 下次循环重试
 - 一致,以 next 设置为新值,返回 true 表示成功
 */
                if (balance.compareAndSet(prev, next)) {
                    break;
                }
            }
    }

其中的关键是 compareAndSet,它的简称就是 CAS (也有 Compare And Swap 的说法),它必须是原子操作。

其中,左侧的两个cas操作都失败了。


慢动作分析


@Slf4j
public class SlowMotion {
    public static void main(String[] args) {
        AtomicInteger balance = new AtomicInteger(10000);
        int mainPrev = balance.get();
        log.debug("try get {}", mainPrev);
        new Thread(() -> {
            sleep(1000);
            int prev = balance.get();
            balance.compareAndSet(prev, 9000);
            log.debug(balance.toString());
        }, "t1").start();
        sleep(2000);
        log.debug("try set 8000...");
        boolean isSuccess = balance.compareAndSet(mainPrev, 8000);
        log.debug("is success ? {}", isSuccess);
        if(!isSuccess){
            mainPrev = balance.get();
            log.debug("try set 8000...");
            isSuccess = balance.compareAndSet(mainPrev, 8000);
            log.debug("is success ? {}", isSuccess);
        }
    }
    private static void sleep(int millis) {
        try {
            Thread.sleep(millis);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

输出结果

2023-10-13 11:28:37.134 [main] try get 10000 
2023-10-13 11:28:38.154 [t1] 9000 
2023-10-13 11:28:39.154 [main] try set 8000... 
2023-10-13 11:28:39.154 [main] is success ? false 
2023-10-13 11:28:39.154 [main] try set 8000... 
2023-10-13 11:28:39.154 [main] is success ? true 


volatile


AtomicInteger 源码里面 应用到了 volatile


获取共享变量时,为了保证该变量的可见性,需要使用 volatile 修饰。


它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作 volatile 变量都是直接操作主存。即一个线程对 volatile 变量的修改,对另一个线程可见。


注意:


volatile 仅仅保证了共享变量的可见性,让其它线程能够看到最新值,但不能解决指令交错问题(不能保证原子性)


CAS 必须借助 volatile 才能读取到共享变量的最新值来实现【比较并交换】的效果


为什么无锁效率高


无锁情况下,即使重试失败,线程始终在高速运行,没有停歇,而 synchronized 会让线程在没有获得锁的时候,发生上下文切换,进入阻塞。打个比喻


线程就好像高速跑道上的赛车,高速运行时,速度超快,一旦发生上下文切换,就好比赛车要减速、熄火,等被唤醒又得重新打火、启动、加速… 恢复到高速运行,代价比较大。(cas 不会让线程停下来,while(true) 不停的循环)


但无锁情况下,因为线程要保持运行,需要额外 CPU 的支持,CPU 在这里就好比高速跑道,没有额外的跑道,线程想高速运行也无从谈起,虽然不会进入阻塞,但由于没有分到时间片,仍然会进入可运行状态,还是会导致上下文切换。(在多核cpu下能发挥出优势,虽然没有陷入block阻塞,但是没有分到时间片,还是要上下文切换)


CAS 的特点


结合 CAS 和 volatile 可以实现无锁并发,适用于线程数少、多核 CPU 的场景下。


  • CAS 是基于乐观锁的思想:最乐观的估计,不怕别的线程来修改共享变量,就算改了也没关系,我吃亏点再重试呗。
  • synchronized 是基于悲观锁的思想:最悲观的估计,得防着其它线程来修改共享变量,我上了锁你们都别想改,我改完了解开锁,你们才有机会。
  • CAS 体现的是无锁并发、无阻塞并发,请仔细体会这两句话的意思,因为没有使用 synchronized,所以线程不会陷入阻塞,这是效率提升的因素之一、但如果竞争激烈,可以想到重试必然频繁发生,反而效率会受影响


原子整数


J.U.C 并发包提供了:


  • AtomicBoolean
  • AtomicInteger
  • AtomicLong


以 AtomicInteger 为例

AtomicInteger i = new AtomicInteger(0);
// 获取并自增(i = 0, 结果 i = 1, 返回 0),类似于 i++
System.out.println(i.getAndIncrement());
// 自增并获取(i = 1, 结果 i = 2, 返回 2),类似于 ++i
System.out.println(i.incrementAndGet());
// 自减并获取(i = 2, 结果 i = 1, 返回 1),类似于 --i
System.out.println(i.decrementAndGet());
// 获取并自减(i = 1, 结果 i = 0, 返回 1),类似于 i--
System.out.println(i.getAndDecrement());
// 获取并加值(i = 0, 结果 i = 5, 返回 0)
System.out.println(i.getAndAdd(5));
// 加值并获取(i = 5, 结果 i = 0, 返回 0)
System.out.println(i.addAndGet(-5));

以getAndIncrement 源码为例

具体来说,这个方法会先读取对象var1上偏移量为var2的整数值,然后将其与给定的var4相加,在尝试使用CAS(Compare And Swap)操作将它们的和写回到这个偏移量上存储的值中。如果CAS操作成功,那么方法返回更新前的偏移量上存储的值,否则就重复执行这个过程,直到CAS操作成功为止。

// 获取并更新(i = 0, p 为 i 的当前值, 结果 i = -2, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.getAndUpdate(p -> p - 2));
// 更新并获取(i = -2, p 为 i 的当前值, 结果 i = 0, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.updateAndGet(p -> p + 2));


剑指JUC原理-9.Java无锁模型(下):https://developer.aliyun.com/article/1413636

目录
相关文章
|
21天前
|
Java 调度
Java并发编程:深入理解线程池的原理与实践
【4月更文挑战第6天】本文将深入探讨Java并发编程中的重要概念——线程池。我们将从线程池的基本原理入手,逐步解析其工作过程,以及如何在实际开发中合理使用线程池以提高程序性能。同时,我们还将关注线程池的一些高级特性,如自定义线程工厂、拒绝策略等,以帮助读者更好地掌握线程池的使用技巧。
|
1月前
|
Java
Java代码居然能画出抛物线模型
Java代码居然能画出抛物线模型
20 0
|
1月前
|
存储 Java C语言
Java代码解释Flash原理
Java代码解释Flash原理
32 0
|
1月前
|
XML Java 数据库连接
谈谈Java反射:从入门到实践,再到原理
谈谈Java反射:从入门到实践,再到原理
60 0
|
1月前
|
存储 Java 编译器
java和c++的主要区别、各自的优缺点分析、java跨平台的原理的深度解析
java和c++的主要区别、各自的优缺点分析、java跨平台的原理的深度解析
104 0
|
1月前
|
开发框架 Java API
java反射机制的原理与简单使用
java反射机制的原理与简单使用
17 1
|
29天前
|
缓存 Java C#
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍(一)
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍
81 0
|
1月前
|
Java
软件工程设计原理里氏替换原则 ,具体实现及JAVA代码举例
里氏替换原则(Liskov Substitution Principle, LSP)是面向对象设计的基本原则之一,由Barbara Liskov提出。这个原则指出,如果类 S 是类 T 的子类型,则程序中使用 T 的对象的地方都可以不经修改地使用 S 的对象。换句话说,子类的对象应该能够替换掉它们的父类对象,而不影响程序的正确性。这个原则强调了继承关系中的行为兼容性,保证了基类和派生类之间的正确抽象和继承关系。
24 3
|
2天前
|
消息中间件 存储 Java
Java与Go的生产者消费者模型比较
【4月更文挑战第20天】
10 1
|
16天前
|
运维 NoSQL 算法
Java开发-深入理解Redis Cluster的工作原理
综上所述,Redis Cluster通过数据分片、节点发现、主从复制、数据迁移、故障检测和客户端路由等机制,实现了一个分布式的、高可用的Redis解决方案。它允许数据分布在多个节点上,提供了自动故障转移和读写分离的功能,适用于需要大规模、高性能、高可用性的应用场景。
16 0