剑指JUC原理-8.Java内存模型(上)

简介: 剑指JUC原理-8.Java内存模型

Java 内存模型


JMM 即 Java Memory Model,它定义了主存、工作内存抽象概念,底层对应着 CPU 寄存器、缓存、硬件内存、CPU 指令优化等。


JMM 体现在以下几个方面


  • 原子性 - 保证指令不会受到线程上下文切换的影响
  • 可见性 - 保证指令不会受 cpu 缓存的影响
  • 有序性 - 保证指令不会受 cpu 指令并行优化的影响


可见性


退不出的循环


先来看一个现象,main 线程对 run 变量的修改对于 t 线程不可见,导致了 t 线程无法停止:

    static boolean run = true;
    public static void main(String[] args) throws InterruptedException {
        Thread t = new Thread(()->{
            while(run){
                // ....
            }
        });
        t.start();
        sleep(1);
        run = false; // 线程t不会如预想的停下来
    }

为什么呢?分析一下:


初始状态, t 线程刚开始从主内存读取了 run 的值到工作内存。

因为 t 线程要频繁从主内存中读取 run 的值,JIT 编译器会将 run 的值缓存至自己工作内存中的高速缓存中,减少对主存中 run 的访问,提高效率

1 秒之后,main 线程修改了 run 的值,并同步至主存,而 t 是从自己工作内存中的高速缓存中读取这个变量的值,结果永远是旧值


解决方法


volatile(易变关键字)


它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作 volatile 变量都是直接操作主存


可见性 vs 原子性


前面例子体现的实际就是可见性,它保证的是在多个线程之间,一个线程对 volatile 变量的修改对另一个线程可见, 不能保证原子性,仅用在一个写线程,多个读线程的情况: 上例从字节码理解是这样的:

getstatic run // 线程 t 获取 run true 
getstatic run // 线程 t 获取 run true 
getstatic run // 线程 t 获取 run true 
getstatic run // 线程 t 获取 run true 
putstatic run // 线程 main 修改 run 为 false, 仅此一次
getstatic run // 线程 t 获取 run false 

比较一下之前我们将线程安全时举的例子:两个线程一个 i++ 一个 i-- ,只能保证看到最新值,不能解决指令交错

// 假设i的初始值为0 
getstatic i // 线程2-获取静态变量i的值 线程内i=0 
getstatic i // 线程1-获取静态变量i的值 线程内i=0 
iconst_1 // 线程1-准备常量1 
iadd // 线程1-自增 线程内i=1 
putstatic i // 线程1-将修改后的值存入静态变量i 静态变量i=1 
iconst_1 // 线程2-准备常量1 
isub // 线程2-自减 线程内i=-1 
putstatic i // 线程2-将修改后的值存入静态变量i 静态变量i=-1

注意:


  • synchronized 语句块既可以保证代码块的原子性,也同时保证代码块内变量的可见性。但缺点是synchronized 是属于重量级操作,性能相对更低。


synchronized 关键字可以确保多线程环境下的可见性,主要通过两个方面来实现:


互斥访问:当一个线程获取到某个对象的锁时,其他线程无法同时获取该对象的锁,只能等待锁释放。这样可以保证在同步块中对共享变量的修改操作是原子的,不会被其他线程中断。


内存可见性:当一个线程释放锁时,会将对共享变量的修改刷新到主内存中,而当另一个线程获取锁时,会从主内存中重新读取共享变量的值,确保看到最新的值。


以下是一个例子来说明 synchronized 关键字如何保证可见性:

public class SynchronizedExample {
    private static boolean flag = false;
  public static void main(String[] args) throws InterruptedException {
    Thread thread1 = new Thread(() -> {
        synchronized (SynchronizedExample.class) {
            // 修改共享变量的值
            flag = true;
            System.out.println("Thread 1: flag is set to true");
        }
    });
    Thread thread2 = new Thread(() -> {
        // 暂停一段时间,确保 thread1 先执行
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        synchronized (SynchronizedExample.class) {
            // 在同步块中访问共享变量
            if (flag) {
                System.out.println("Thread 2: flag is true");
            } else {
                System.out.println("Thread 2: flag is false");
            }
        }
    });
    thread1.start();
    thread2.start();
    thread1.join();
    thread2.join();
}
}

在这个例子中,有两个线程 thread1 和 thread2,它们同时访问了共享变量 flag。首先,thread1 获取了 SynchronizedExample.class 对象的锁,并将 flag 设置为 true,然后释放锁。接着,thread2 获取了同一个锁,并在同步块中访问 flag 的值。由于 thread2 获取到了锁并读取了 flag 的最新值,因此能正确地判断出 flag 的状态。


通过 synchronized 关键字的互斥性和内存可见性的特性,确保了多线程环境下的共享变量操作的一致性和可见性。


  • 如果在前面示例的死循环中加入 System.out.println() 会发现即使不加 volatile 修饰符,线程 t 也能正确看到对 run 变量的修改了,想一想为什么?
  static boolean run = true;
    public static void main(String[] args) throws InterruptedException {
        Thread t = new Thread(()->{
            while(run){
                // ....
                System.out.println();
            }
        });
        t.start();
        sleep(1);
        run = false; // 线程t不会如预想的停下来
    }

通过分析 System.out.println() 源码来得出结果。

synchronized 是 Java 中用于实现同步的关键字,它可以用于修饰方法和代码块。当一个线程获取了对象的锁,执行 synchronized 修饰的代码时,会将变量从主内存中拷贝到线程的本地内存中。


在 synchronized 块执行结束后,JVM 会把该线程对应的本地内存中修改过的变量刷新回主内存中,以保证不同线程间所共享的变量值的一致性。


模式之两阶段终止


// 停止标记用 volatile 是为了保证该变量在多个线程之间的可见性
// 我们的例子中,即主线程把它修改为 true 对 t1 线程可见
class TPTVolatile {
    private Thread thread;
    private volatile boolean stop = false;
    public void start(){
        thread = new Thread(() -> {
            while(true) {
                Thread current = Thread.currentThread();
                if(stop) {
                    log.debug("料理后事");
                    break;
                }
                try {
                    Thread.sleep(1000);
                    log.debug("将结果保存");
                } catch (InterruptedException e) {
                }
                // 执行监控操作
            }
        },"监控线程");
        thread.start();
    }
    public void stop() {
        stop = true;
        thread.interrupt(); // 如果设置为ture后,线程还在sleep状态,那么使用打断即可
    }
}

调用

TPTVolatile t = new TPTVolatile();
t.start();
Thread.sleep(3500);
log.debug("stop");
t.stop();

结果

11:54:52.003 c.TPTVolatile [监控线程] - 将结果保存
11:54:53.006 c.TPTVolatile [监控线程] - 将结果保存
11:54:54.007 c.TPTVolatile [监控线程] - 将结果保存
11:54:54.502 c.TestTwoPhaseTermination [main] - stop 
11:54:54.502 c.TPTVolatile [监控线程] - 料理后事


同步模式之 Balking


定义


Balking (犹豫)模式用在一个线程发现另一个线程或本线程已经做了某一件相同的事,那么本线程就无需再做了,直接结束返回


实现


class TwoPhaseTermination {
    // 监控线程
    private Thread monitorThread;
    // 停止标记
    private volatile boolean stop = false;
    // 判断是否执行过 start 方法
    private boolean starting = false;
    // 启动监控线程
    public void start() {
        synchronized (this) {
            if (starting) { // false
                return;
            }
            starting = true;
            monitorThread = new Thread(() -> {
            while (true) {
                Thread current = Thread.currentThread();
                // 是否被打断
                if (stop) {
                    log.debug("料理后事");
                    break;
                }
                try {
                    Thread.sleep(1000);
                    log.debug("执行监控记录");
                } catch (InterruptedException e) {
                }
            }
        }, "monitor");
        monitorThread.start();
        }
    }
    // 停止监控线程
    public void stop() {
        stop = true;
        monitorThread.interrupt();
    }
}
public static void main(String[] args) throws InterruptedException {
        TwoPhaseTermination tpt = new TwoPhaseTermination();
        tpt.start();
        tpt.start();
        tpt.start();
        /*Thread.sleep(3500);
        log.debug("停止监控");
        tpt.stop();*/
    }

当前端页面多次点击按钮调用 start 时


输出

[http-nio-8080-exec-1] cn.itcast.monitor.service.MonitorService - 该监控线程已启动?(false)
[http-nio-8080-exec-1] cn.itcast.monitor.service.MonitorService - 监控线程已启动...
[http-nio-8080-exec-2] cn.itcast.monitor.service.MonitorService - 该监控线程已启动?(true)
[http-nio-8080-exec-3] cn.itcast.monitor.service.MonitorService - 该监控线程已启动?(true)
[http-nio-8080-exec-4] cn.itcast.monitor.service.MonitorService - 该监控线程已启动?(true)

一个优化就是 尽可能的让synchronized代码块中的代码较少,所以可以将不关键的因素抽取出来

public void start() {
        synchronized (this) {
            if (starting) { // false
                return;
            }
            starting = true;
        }
    monitorThread = new Thread(() -> {
            while (true) {
                Thread current = Thread.currentThread();
                // 是否被打断
                if (stop) {
                    log.debug("料理后事");
                    break;
                }
                try {
                    Thread.sleep(1000);
                    log.debug("执行监控记录");
                } catch (InterruptedException e) {
                }
            }
        }, "monitor");
        monitorThread.start();
    }

它还经常用来实现线程安全的单例

public final class Singleton {
    private Singleton() {
    }
    private static Singleton INSTANCE = null;
    public static synchronized Singleton getInstance() {
        if (INSTANCE != null) {
            return INSTANCE;
        }
        INSTANCE = new Singleton();
        return INSTANCE;
    }
}


有序性


JVM 会在不影响正确性的前提下,可以调整语句的执行顺序,思考下面一段代码

static int i;
static int j;
// 在某个线程内执行如下赋值操作
i = ...; 
j = ...; 

可以看到,至于是先执行 i 还是 先执行 j ,对最终的结果不会产生影响。所以,上面代码真正执行时,既可以是

i = ...; 
j = ...;

也可以是

j = ...;
i = ...;

这种特性称之为『指令重排』,多线程下『指令重排』会影响正确性。为什么要有重排指令这项优化呢?从 CPU执行指令的原理来理解一下吧


指令级并行原理


名词


Clock Cycle Time


主频的概念大家接触的比较多,而 CPU 的 Clock Cycle Time(时钟周期时间),等于主频的倒数,意思是 CPU 能够识别的最小时间单位,比如说 4G 主频的 CPU 的 Clock Cycle Time 就是 0.25 ns,作为对比,我们墙上挂钟的Cycle Time 是 1s


例如,运行一条加法指令一般需要一个时钟周期时间


CPI


有的指令需要更多的时钟周期时间,所以引出了 CPI (Cycles Per Instruction)指令平均时钟周期数


IPC


IPC(Instruction Per Clock Cycle) 即 CPI 的倒数,表示每个时钟周期能够运行的指令数


剑指JUC原理-8.Java内存模型(中):https://developer.aliyun.com/article/1413627

目录
相关文章
|
15天前
|
算法 JavaScript 前端开发
新生代和老生代内存划分的原理是什么?
【10月更文挑战第29天】新生代和老生代内存划分是JavaScript引擎为了更高效地管理内存、提高垃圾回收效率而采用的一种重要策略,它充分考虑了不同类型对象的生命周期和内存使用特点,通过不同的垃圾回收算法和晋升机制,实现了对内存的有效管理和优化。
|
11天前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
11天前
|
Java
Java之CountDownLatch原理浅析
本文介绍了Java并发工具类`CountDownLatch`的使用方法、原理及其与`Thread.join()`的区别。`CountDownLatch`通过构造函数接收一个整数参数作为计数器,调用`countDown`方法减少计数,`await`方法会阻塞当前线程,直到计数为零。文章还详细解析了其内部机制,包括初始化、`countDown`和`await`方法的工作原理,并给出了一个游戏加载场景的示例代码。
Java之CountDownLatch原理浅析
|
13天前
|
Java 索引 容器
Java ArrayList扩容的原理
Java 的 `ArrayList` 是基于数组实现的动态集合。初始时,`ArrayList` 底层创建一个空数组 `elementData`,并设置 `size` 为 0。当首次添加元素时,会调用 `grow` 方法将数组扩容至默认容量 10。之后每次添加元素时,如果当前数组已满,则会再次调用 `grow` 方法进行扩容。扩容规则为:首次扩容至 10,后续扩容至原数组长度的 1.5 倍或根据实际需求扩容。例如,当需要一次性添加 100 个元素时,会直接扩容至 110 而不是 15。
Java ArrayList扩容的原理
|
11天前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
33 6
|
16天前
|
存储 缓存 安全
Java内存模型(JMM):深入理解并发编程的基石####
【10月更文挑战第29天】 本文作为一篇技术性文章,旨在深入探讨Java内存模型(JMM)的核心概念、工作原理及其在并发编程中的应用。我们将从JMM的基本定义出发,逐步剖析其如何通过happens-before原则、volatile关键字、synchronized关键字等机制,解决多线程环境下的数据可见性、原子性和有序性问题。不同于常规摘要的简述方式,本摘要将直接概述文章的核心内容,为读者提供一个清晰的学习路径。 ####
35 2
|
16天前
|
存储 安全 Java
什么是 Java 的内存模型?
Java内存模型(Java Memory Model, JMM)是Java虚拟机(JVM)规范的一部分,它定义了一套规则,用于指导Java程序中变量的访问和内存交互方式。
40 1
|
运维 Java 大数据
Java并发JUC(java.util.concurrent)ForkJoin/异步回调
Java并发JUC(java.util.concurrent)ForkJoin/异步回调
Java并发JUC(java.util.concurrent)ForkJoin/异步回调
|
11天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
7天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
28 9