jvm性能调优实战 - 47超大数据量处理系统是如何OOM的

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: jvm性能调优实战 - 47超大数据量处理系统是如何OOM的

Pre

之前我们已经用代码给大家都演示过几种不同的内存溢出的场景了,但是光看代码演示可能大家还是找不到感觉。因此,我们同样也会用曾经遇到过的真实线上系统运行场景来让大家看看是如何触发堆内存溢出的。


Case

还记得超大数据量的计算引擎系统么? 之前就用这个系统案例给大家分析过GC问题,但是因为他处理的数据量实在是很大,负载也过高,所以除了GC问题以外,还有OOM问题。

首先用最最简化的一张图给大家解释系统的工作流程。简单来说,就是不停的从数据存储中加载大量的数据到内存里来进行复杂的计算,如下图所示。

这个系统会不停的加载数据到内存里来计算,每次少则加载几十万条数据,多则加载上百万条数据,所以系统的内存负载压力是非常大的。

另外这里给大家多讲一些之前案例中没提到过的这个系统的一些运行流程,因为他跟我们这次讲解的OOM场景是有关系的。

这个系统每次加载数据到内存里计算完毕之后,就需要将计算好的数据推送给另外一个系统,两个系统之间的数据推送和交互,最适合的就是基于消息中间件来做

因此当时就选择了将数据推送到Kafka,然后另外一个系统从Kafka里取数据,如下图。

这就是系统完整的一个运行流程,加载数据、计算数据、推送数据


针对Kafka故障设计的高可用场景

既然系统架构如此,那么大家思考一下,数据计算系统要推送计算结果到Kafka去,万一Kafka挂了怎么办?此时就必须设计一个针对Kafka的故障高可用机制

就当时而言,刚开始负责这块的工程师选择了一个思考欠佳的技术方案。一旦发现Kafka故障,就会将数据都留存在内存里,不停的重试,直到Kafka恢复才可以,大家看下图的示意。

这个时候就有一个隐患了,万一真的遇上Kafka故障,那么一次计算对应的数据必须全部驻留内存,无法释放,一直重试等待Kafka恢复,这是绝对不合理的一个方案设计。

然后数据计算系统还在不停的加载数据到内存里来处理,每次计算完的数据还无法推送到Kafka,全部得留存在内存里等着,如此循环往复,必然导致内存里的数据越来越多。


无法释放的内存最终导致OOM

正是因为有这个机制的设计,所以有一次确实发生了Kafka的短暂临时故障,也因此导致了系统无法将计算后的数据推送给Kafka

然后所有数据全部驻留在内存里等待,并且还在不停的加载数据到内存里来计算。

内存里的数据必然越来越多,每次Eden区塞满之后,大量存活的对象必须转入老年代中,而且这些老年代里的对象还是无法释放掉的。

老年代最终一定会满,而且最终一定会有一次Eden区满之后,一大批对象要转移到老年代,结果老年代即使Full gc之后还是没有空间可以放的下,最终就会导致内存溢出。然后线上收到报警说内存溢出。

最后这个系统全线崩溃,无法正常运行。


故障修复

其实很简单,当时就临时直接取消了Kafka故障下的重试机制,一旦Kafka故障,直接丢弃掉本地计算结果,允许释放大量数据占用的内存。后续的话,将这个机制优化为一旦Kafka故障,则计算结果写本地磁盘,允许内存中的数据被回收。

这就是一个非常真实的线上系统设计不合理导致的内存溢出问题,想必大家看了这个案例后,一定对内存溢出问题感触更加深刻了。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
存储 监控 算法
jvm-性能调优(二)
jvm-性能调优(二)
|
22天前
|
监控 架构师 Java
Java虚拟机调优的艺术:从入门到精通####
本文作为一篇深入浅出的技术指南,旨在为Java开发者揭示JVM调优的神秘面纱,通过剖析其背后的原理、分享实战经验与最佳实践,引领读者踏上从调优新手到高手的进阶之路。不同于传统的摘要概述,本文将以一场虚拟的对话形式,模拟一位经验丰富的架构师向初学者传授JVM调优的心法,激发学习兴趣,同时概括性地介绍文章将探讨的核心议题——性能监控、垃圾回收优化、内存管理及常见问题解决策略。 ####
|
29天前
|
监控 Java 编译器
Java虚拟机调优指南####
本文深入探讨了Java虚拟机(JVM)调优的精髓,从内存管理、垃圾回收到性能监控等多个维度出发,为开发者提供了一系列实用的调优策略。通过优化配置与参数调整,旨在帮助读者提升Java应用的运行效率和稳定性,确保其在高并发、大数据量场景下依然能够保持高效运作。 ####
32 1
|
1月前
|
存储 算法 Java
JVM进阶调优系列(10)敢向stop the world喊卡的G1垃圾回收器 | 有必要讲透
本文详细介绍了G1垃圾回收器的背景、核心原理及其回收过程。G1,即Garbage First,旨在通过将堆内存划分为多个Region来实现低延时的垃圾回收,每个Region可以根据其垃圾回收的价值被优先回收。文章还探讨了G1的Young GC、Mixed GC以及Full GC的具体流程,并列出了G1回收器的核心参数配置,帮助读者更好地理解和优化G1的使用。
|
1月前
|
监控 Java 测试技术
Elasticsearch集群JVM调优垃圾回收器的选择
Elasticsearch集群JVM调优垃圾回收器的选择
55 1
|
1月前
|
Arthas 监控 Java
JVM进阶调优系列(9)大厂面试官:内存溢出几种?能否现场演示一下?| 面试就那点事
本文介绍了JVM内存溢出(OOM)的四种类型:堆内存、栈内存、元数据区和直接内存溢出。每种类型通过示例代码演示了如何触发OOM,并分析了其原因。文章还提供了如何使用JVM命令工具(如jmap、jhat、GCeasy、Arthas等)分析和定位内存溢出问题的方法。最后,强调了合理设置JVM参数和及时回收内存的重要性。
|
1月前
|
监控 Java 编译器
Java虚拟机调优实战指南####
本文深入探讨了Java虚拟机(JVM)的调优策略,旨在帮助开发者和系统管理员通过具体、实用的技巧提升Java应用的性能与稳定性。不同于传统摘要的概括性描述,本文摘要将直接列出五大核心调优要点,为读者提供快速预览: 1. **初始堆内存设置**:合理配置-Xms和-Xmx参数,避免频繁的内存分配与回收。 2. **垃圾收集器选择**:根据应用特性选择合适的GC策略,如G1 GC、ZGC等。 3. **线程优化**:调整线程栈大小及并发线程数,平衡资源利用率与响应速度。 4. **JIT编译器优化**:利用-XX:CompileThreshold等参数优化即时编译性能。 5. **监控与诊断工
|
1月前
|
存储 监控 Java
JVM进阶调优系列(8)如何手把手,逐行教她看懂GC日志?| IT男的专属浪漫
本文介绍了如何通过JVM参数打印GC日志,并通过示例代码展示了频繁YGC和FGC的场景。文章首先讲解了常见的GC日志参数,如`-XX:+PrintGCDetails`、`-XX:+PrintGCDateStamps`等,然后通过具体的JVM参数和代码示例,模拟了不同内存分配情况下的GC行为。最后,详细解析了GC日志的内容,帮助读者理解GC的执行过程和GC处理机制。
|
29天前
|
存储 IDE Java
实战优化公司线上系统JVM:从基础到高级
【11月更文挑战第28天】Java虚拟机(JVM)是Java语言的核心组件,它使得Java程序能够实现“一次编写,到处运行”的跨平台特性。在现代应用程序中,JVM的性能和稳定性直接影响到系统的整体表现。本文将深入探讨JVM的基础知识、基本特点、定义、发展历史、主要概念、调试工具、内存管理、垃圾回收、性能调优等方面,并提供一个实际的问题demo,使用IntelliJ IDEA工具进行调试演示。
34 0
|
2月前
|
Arthas 监控 数据可视化
JVM进阶调优系列(7)JVM调优监控必备命令、工具集合|实用干货
本文介绍了JVM调优监控命令及其应用,包括JDK自带工具如jps、jinfo、jstat、jstack、jmap、jhat等,以及第三方工具如Arthas、GCeasy、MAT、GCViewer等。通过这些工具,可以有效监控和优化JVM性能,解决内存泄漏、线程死锁等问题,提高系统稳定性。文章还提供了详细的命令示例和应用场景,帮助读者更好地理解和使用这些工具。