优秀的推荐系统架构与应用:从YouTube到Pinterest、Flink和阿里巴巴

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 优秀的推荐系统架构与应用:从YouTube到Pinterest、Flink和阿里巴巴


🌟 业界经典:YouTube深度学习推荐系统的经典架构长什么样?

YouTube推荐系统是目前最著名的深度学习推荐系统之一,它建立了一个复杂的推荐架构,包括多个深度学习模型和一些额外的组件。下面是YouTube推荐系统的经典架构:

🍊 基础架构

  • 数据处理和特征工程:包括数据的清洗、转换和标准化,以及特征的提取和选择。
  • 候选生成和过滤:产生候选集并使用一些规则或筛选器来减少候选集的大小。
  • 候选重排序:将候选集按照可能性排序,以便更好地展示给用户。

🍊 深度学习模型

  • 处理用户和视频元数据的深度模型:包括用户和视频特征的嵌入层,以及一些神经网络层来对这些特征进行处理。
  • 基于行为的模型:利用用户的历史行为信息来学习个性化的推荐模型,包括长短期记忆网络(LSTM)和卷积神经网络(CNN)等模型。
  • 更新模型:使用增量式的训练算法来更新模型参数。

🍊 额外组件

  • 用户反馈和满意度:包括用户的点击、观看和喜欢等信息,以及用户对推荐结果的反馈,用于优化推荐模型。
  • 用户画像和兴趣:根据用户的个人信息和历史行为,生成用户的画像和兴趣标签,用于更好地推荐相关内容。
  • 视频标签和关键词:根据视频的元数据,生成视频的标签和关键词,用于更好地匹配用户的兴趣。

总之,YouTube推荐系统是一个复杂的深度学习架构,包括多个模型和组件,用于实时推荐最相关的视频内容,为用户提供更好的观看体验。

🌟 图神经网络:Pinterest如何应用图神经网络的?

Pinterest是一个以图片为基础的社交平台,用户可以在这里分享和收集自己喜欢的图片。Pinterest的推荐系统主要基于图神经网络,下面是Pinterest是如何应用图神经网络的:

🍊 数据预处理

Pinterest的数据主要包括用户和图片数据,其中用户数据包括用户画像和历史行为,图片数据包括图片内容和元数据。在预处理阶段,Pinterest将用户和图片数据转化为图结构,并使用一些图处理技术进行数据清洗和标准化。

🍊 图神经网络模型

Pinterest的图神经网络主要包括两个模型:图卷积网络(GCN)和图注意力网络(GAT)。这些模型都基于用户和图片的图结构,通过对结点和边的权重进行学习,来预测用户的兴趣和推荐相关的图片。

特别地,GCN主要用于学习用户和图片之间的关系,通过考虑图结构和邻居结点之间的关联来更新每个结点的向量表示;GAT则更注重结点之间的重要性,通过学习结点之间的注意力系数来确定哪些结点对于兴趣预测更有价值。

🍊 推荐系统流程

Pinterest的推荐系统流程主要包括候选集生成、兴趣预测和排序三个步骤。在候选集生成阶段,Pinterest通过一些策略从全量图片集合中选择一部分图片作为候选集;在兴趣预测阶段,Pinterest使用图神经网络模型来预测用户对各个图片的兴趣得分,并将这些得分转化为推荐概率;在排序阶段,Pinterest通过一些规则和规模较小的模型来对推荐概率进行再次排序,得到最终的推荐列表。

总之,Pinterest的推荐系统基于图神经网络,能够更好地处理用户和图片之间的复杂关系,提高推荐效果和用户体验。

🌟 流处理平台:Flink如何快速识别用户兴趣,实现实时推荐的?

Flink是一个开源的流处理平台,可以用于实时数据处理和分析。Flink在推荐系统中的应用比较广泛,能够快速处理大规模数据,并实现实时推荐。下面是Flink如何快速识别用户兴趣,实现实时推荐的方法:

🍊 数据处理和特征工程

Flink的推荐系统首先需要进行数据处理和特征工程,主要包括数据的清洗、处理和标准化,以及各种特征的提取和选择。在这个过程中,Flink需要使用一些流处理技术,如窗口、聚合和Join等操作,来实现分布式计算和实时数据处理。

🍊 特征处理和建模

Flink的特征处理和建模主要基于机器学习技术,包括在线学习、增量学习、模型压缩和融合等方法。这些方法可以帮助Flink快速识别用户兴趣和提高推荐效果,同时也能够降低模型复杂度和计算资源的消耗。

🍊 实时推荐系统流程

Flink的实时推荐系统流程主要包括数据流处理、特征提取和模型更新三个步骤。在数据流处理阶段,Flink通过一些流处理技术来实时处理用户行为和物品信息,生成用户画像和兴趣标签;在特征提取阶段,Flink基于机器学习技术,从用户画像和兴趣标签中提取特征并更新模型;在模型更新阶段,Flink使用一些增量式的学习算法,实时更新推荐模型的参数和权重。

总之,Flink是一个优秀的流处理平台,能够快速识别用户兴趣和实现实时推荐。它可以通过一些流处理技术和机器学习方法,来优化推荐效果和用户体验。

🌟 模型迭代:阿里巴巴如何迭代更新推荐模型的?

阿里巴巴是全球最大的在线和移动电商企业之一,拥有庞大的用户群体和商品数据。为了更好地推荐商品并提高用户购物体验,阿里巴巴采用了一种迭代式的推荐模型更新方法,下面是阿里巴巴如何迭代更新推荐模型的:

🍊 初始模型训练

阿里巴巴的推荐模型一开始是根据一些标准特征和规则进行训练的,这些特征包括商品和用户的基本信息、历史行为和上下文信息等。通过这些特征,阿里巴巴能够对商品进行初步的推荐。

🍊 增强模型训练

在初始模型的基础上,阿里巴巴引入了一种增强模型训练的方法,即使用增量学习和在线学习的方式来不断更新和优化模型。通过监控用户的实时行为和反馈信息,阿里巴巴可以实时更新模型的参数和权重,从而提高推荐效果和用户体验。

🍊 A/B测试和效果评估

为了保证迭代更新的效果和稳定性,阿里巴巴采用了A/B测试和效果评估的方式来验证和比较新旧模型的性能。在A/B测试中,阿里巴巴将用户随机分为两组,一组使用新模型推荐,另一组使用旧模型推荐,通过比较两组用户的购买和满意度等指标来评估新模型的效果。在效果评估中,阿里巴巴使用一些指标和算法来评估模型的精度、召回率、ROC曲线和AUC等性能指标。

🍊 模型迭代和优化

根据A/B测试和效果评估的结果,阿里巴巴可以不断迭代更新推荐模型,并不断优化各种特征和算法。通过不断优化和迭代,阿里巴巴能够实现更精准和个性化的推荐,提升用户的购物体验和忠诚度。

总之,阿里巴巴采用了一种迭代式的推荐模型更新方法,通过增量学习和在线学习的方式不断优化推荐模型,并使用A/B测试和效果评估来验证和比较新旧模型的性能。这种方法能够帮助阿里巴巴实现更精准和个性化的推荐,提升用户的购物体验和忠诚度。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
5月前
|
人工智能 自然语言处理 开发工具
统一多模态 Transformer 架构在跨模态表示学习中的应用与优化
本文介绍统一多模态 Transformer(UMT)在跨模态表示学习中的应用与优化,涵盖模型架构、实现细节与实验效果,探讨其在图文检索、图像生成等任务中的卓越性能。
统一多模态 Transformer 架构在跨模态表示学习中的应用与优化
|
4月前
|
监控 Java API
Spring Boot 3.2 结合 Spring Cloud 微服务架构实操指南 现代分布式应用系统构建实战教程
Spring Boot 3.2 + Spring Cloud 2023.0 微服务架构实践摘要 本文基于Spring Boot 3.2.5和Spring Cloud 2023.0.1最新稳定版本,演示现代微服务架构的构建过程。主要内容包括: 技术栈选择:采用Spring Cloud Netflix Eureka 4.1.0作为服务注册中心,Resilience4j 2.1.0替代Hystrix实现熔断机制,配合OpenFeign和Gateway等组件。 核心实操步骤: 搭建Eureka注册中心服务 构建商品
701 3
|
3月前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
655 7
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
2月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
209 6
|
6月前
|
存储 编解码 Serverless
Serverless架构下的OSS应用:函数计算FC自动处理图片/视频转码(演示水印添加+缩略图生成流水线)
本文介绍基于阿里云函数计算(FC)和对象存储(OSS)构建Serverless媒体处理流水线,解决传统方案资源利用率低、运维复杂、成本高等问题。通过事件驱动机制实现图片水印添加、多规格缩略图生成及视频转码优化,支持毫秒级弹性伸缩与精确计费,提升处理效率并降低成本,适用于高并发媒体处理场景。
320 0
|
3月前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
3月前
|
机器学习/深度学习 人工智能 vr&ar
H4H:面向AR/VR应用的NPU-CIM异构系统混合卷积-Transformer架构搜索——论文阅读
H4H是一种面向AR/VR应用的混合卷积-Transformer架构,基于NPU-CIM异构系统,通过神经架构搜索实现高效模型设计。该架构结合卷积神经网络(CNN)的局部特征提取与视觉Transformer(ViT)的全局信息处理能力,提升模型性能与效率。通过两阶段增量训练策略,缓解混合模型训练中的梯度冲突问题,并利用异构计算资源优化推理延迟与能耗。实验表明,H4H在相同准确率下显著降低延迟和功耗,为AR/VR设备上的边缘AI推理提供了高效解决方案。
415 0
|
2月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
|
4月前
|
Web App开发 Linux 虚拟化
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
241 0
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
|
6月前
|
消息中间件 存储 Kafka
一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性
本文详细介绍了分布式消息中间件RocketMQ的核心概念、部署方式及使用方法。RocketMQ由阿里研发并开源,具有高性能、高可靠性和分布式特性,广泛应用于金融、互联网等领域。文章从环境搭建到消息类型的实战(普通消息、延迟消息、顺序消息和事务消息)进行了全面解析,并对比了三种消费者类型(PushConsumer、SimpleConsumer和PullConsumer)的特点与适用场景。最后总结了使用RocketMQ时的关键注意事项,如Topic和Tag的设计、监控告警的重要性以及性能与可靠性的平衡。通过学习本文,读者可掌握RocketMQ的使用精髓并灵活应用于实际项目中。
4426 9
 一文带你从入门到实战全面掌握RocketMQ核心概念、架构部署、实践应用和高级特性

热门文章

最新文章