Hadoop 跑wordcount demo

简介: Hadoop 跑wordcount demo

1.新建文件夹

hadoop fs -mkdir /input

2.上传文件 /opt/hadoop-2.9.2/LICENSE.txt

hadoop fs -put LICENSE.txt /input

3.运行程序 /opt/hadoop-2.9.2/share/hadoop/mapreduce

注意:output目录不能存在,hadoop会自己建立这个目录,这是hadoop内部的一个机制,如果有这个目录,程序无法执行

hadoop jar hadoop-mapreduce-examples-2.9.2.jar wordcount /input /output

4.运行状态

5.查看结果 hadoop fs -cat /output/part-r-00000

6.源代码分析

package com.xq.wordcount;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCount {
    //自定义的mapper,继承org.apache.hadoop.mapreduce.Mapper
    public static class MyMapper extends org.apache.hadoop.mapreduce.Mapper<LongWritable, Text, Text, LongWritable>{
        @Override
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, LongWritable>.Context context)
                throws IOException, InterruptedException {
            String line = value.toString();//split  函数是用于按指定字符(串)或正则去分割某个字符串,结果以字符串数组形式返回,这里按照"\t"来分割text文件中字符,即一个制表符,这就是为什么我在文本中用了空格分割,导致最后的结果有很大的出入。
            String[] splited = line.split(" ");  //foreach 就是 for(元素类型t 元素变量x:遍历对象obj){引用x的java语句}
            for (String word : splited) {
                context.write(new Text(word), new LongWritable(1));
            }
        }
    }
    public static class MyReducer extends org.apache.hadoop.mapreduce.Reducer<Text, LongWritable, Text, LongWritable>{
        @Override
        protected void reduce(Text k2, Iterable<LongWritable> v2s,
                              Reducer<Text, LongWritable, Text, LongWritable>.Context context) throws IOException, InterruptedException {
            long count = 0L;
            for (LongWritable v2 : v2s) {
                count += v2.get();
            }
            LongWritable v3 = new LongWritable(count);
            context.write(k2, v3);
        }
    }
    //客户端代码,写完交给ResourceManager框架去执行
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, WordCount.class.getSimpleName());
        //打成jar执行
        job.setJarByClass(WordCount.class);
        //数据在哪里?
        FileInputFormat.setInputPaths(job, args[0]);
        //使用哪个mapper处理输入的数据?
        job.setMapperClass(MyMapper.class);
        //map输出的数据类型是什么?
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
         job.setCombinerClass(MyReducer.class);//combine
        //使用哪个reducer处理输入的数据?
        job.setReducerClass(MyReducer.class);
        //reduce输出的数据类型是什么?
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);
        //数据输出到哪里?
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        //交给yarn去执行,直到执行结束才退出本程序
        job.waitForCompletion(true);
    }
}

pom文件

<properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <maven.compiler.source>1.8</maven.compiler.source>
    <maven.compiler.target>1.8</maven.compiler.target>
</properties>
<build>
    <pluginManagement>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-jar-plugin</artifactId>
                <configuration>
                    <archive>
                        <manifest>
                            <mainClass>com.xq.wordcount.WordCount</mainClass>
                            <addClasspath>true</addClasspath>
                            <classpathPrefix>lib/</classpathPrefix>
                        </manifest>
                    </archive>
                    <classesDirectory>
                    </classesDirectory>
                </configuration>
            </plugin>
        </plugins>
    </pluginManagement>
</build>
<dependencies>
    <dependency>
        <groupId>junit</groupId>
        <artifactId>junit</artifactId>
        <version>3.8.1</version>
        <scope>test</scope>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-common</artifactId>
        <version>2.6.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-client</artifactId>
        <version>2.6.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-hdfs</artifactId>
        <version>2.6.0</version>
    </dependency>
    <dependency>
        <groupId>log4j</groupId>
        <artifactId>log4j</artifactId>
        <version>1.2.17</version>
    </dependency>
</dependencies>


相关文章
|
2月前
|
分布式计算 资源调度 Hadoop
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
110 3
|
2月前
|
分布式计算 资源调度 Hadoop
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
Hadoop-05-Hadoop集群 集群WordCount 超详细 真正的分布式计算 上传HDFS MapReduce计算 YRAN查看任务 上传计算下载查看
56 1
|
4月前
|
分布式计算 Hadoop Java
Hadoop_MapReduce中的WordCount运行详解
MapReduce的WordCount程序在分布式系统中计算大数据集中单词出现的频率时,提供了一个可以复用和可伸缩的解决方案。它体现了MapReduce编程模型的强大之处:简单、可靠且将任务自动分布到一个集群中去执行。它首先运行一系列的Map任务来处理原始数据,然后通过Shuffle和Sort机制来组织结果,最后通过运行Reduce任务来完成最终计算。因此,即便数据量非常大,通过该模型也可以高效地进行处理。
118 1
|
6月前
|
分布式计算 Hadoop Java
运行Hadoop自带的wordcount单词统计程序
运行Hadoop自带的wordcount单词统计程序
166 3
|
7月前
|
分布式计算 Hadoop
使用Hadoop ToolRunner 运行wordcount demo
使用Hadoop ToolRunner 运行wordcount demo
56 0
|
6月前
|
分布式计算 资源调度 Java
Scala+Spark+Hadoop+IDEA实现WordCount单词计数,上传并执行任务(简单实例-下)
Scala+Spark+Hadoop+IDEA实现WordCount单词计数,上传并执行任务(简单实例-下)
70 0
|
6月前
|
分布式计算 Hadoop Scala
Scala +Spark+Hadoop+Zookeeper+IDEA实现WordCount单词计数(简单实例-上)
Scala +Spark+Hadoop+Zookeeper+IDEA实现WordCount单词计数(简单实例-上)
60 0
|
分布式计算 Hadoop Java
Hadoop学习笔记:运行wordcount对文件字符串进行统计案例
Hadoop学习笔记:运行wordcount对文件字符串进行统计案例
80 0
|
XML 分布式计算 资源调度
Hadoop本地运行模式(Grep案例和WordCount 案例)
Hadoop本地运行模式(Grep案例和WordCount 案例)
370 1
|
存储 分布式计算 Hadoop
Hadoop配置手册2: 测试Hdfs和WordCount测试
Hadoop配置手册2: 测试Hdfs和WordCount测试
151 0