操作系统实验一:进程和线程(2)

简介: 七、共享资源的互斥访问创建两个线程来实现对一个数的递加 pthread_example.c1、运行

操作系统实验一:进程和线程(1):https://developer.aliyun.com/article/1407233

七、共享资源的互斥访问

创建两个线程来实现对一个数的递加 pthread_example.c

1、运行

例程1

代码太长,截图不便,我直接贴文本吧。

#include<pthread.h>
#include<stdlib.h>
#include<stdio.h>
#include<sys/time.h>
#include<string.h>
#include<unistd.h>
#define MAX 10
pthread_t thread[2];
pthread_mutex_t mut;
int number=0;
int i;
void thread1(){
  printf("thread1: I'm thread 1\n");
  for(i=0;i<MAX;i++){
    printf("thread1: number=%d\n",number);
    pthread_mutex_lock(&mut);
    number++;
    pthread_mutex_unlock(&mut);
    sleep(2);
  }
  pthread_exit(NULL);
}
void thread2(){
  printf("thread2: I'm thread 2\n");
  for(i=0;i<MAX;i++){
    printf("thread2: number=%d\n",number);
    pthread_mutex_lock(&mut);
    number++;
    pthread_mutex_unlock(&mut);
    sleep(3);
  }
  pthread_exit(NULL);
}
void thread_create(){
  int temp;
  memset(&thread,0,sizeof(thread));
  if( (temp=pthread_create(&thread[0],NULL,(void*)thread1,NULL)) != 0){
    printf("create thread1 failed!\n");
  }else{
    printf("create thread1 success!\n");
  }
  if( (temp=pthread_create(&thread[1],NULL,(void*)thread2,NULL)) != 0){
    printf("create thread2 failed!\n");
  }else{
    printf("create thread2 success!\n");
  }
}
void thread_wait(){
  if(thread[0]!=0){
    pthread_join(thread[0],NULL);
    printf("thread1 end!\n");
  }
  if(thread[1]!=0){
    pthread_join(thread[1],NULL);
    printf("thread2 end!\n");
  }                   
}
int main(){
  pthread_mutex_init(&mut,NULL);
  printf("I am main, I am creating thread!\n");
  thread_create();
  printf("I am main, I am waiting thread end!\n");
  thread_wait();
  return 0;
}

b05a70b0c8234176a386b66807c60af5.png

2、解释运行结果

进程是资源分配的基本单位,线程是调度的基本单位。上述代码中,int number和int i都是被两个线程所共享的变量。利用mutex可以实现对共享资源的互斥访问,这个比较容易理解,但是上面的运行结果中,可能有些令人疑惑的地方。


1、为什么会打印两次"number=0",这正常吗?


是正常的,比如在如下图所示的执行顺序(但不唯一)中,就会出现打印两次"number=0"然后打印"number=2"的情况。注意sleep()会直接让当前进程阻塞,因此下图中在sleep处都是拐点

e63dd231182b486ca4b93b0e1b8b71a5.png

2、为什么thread1连续输出了两个数"number=6"和"number=7"?


对进程的同步与互斥有些模糊时,容易产生这样的疑问。运行结果中,大部分输出都是thread1和thread2交替的,只有6和7这里是同一个线程连续输出两次,以至于觉得本应该交替输出、而连续输出是异常的。


其实不是,上述thread1的代码中是sleep(2),而thread2的代码中是sleep(3)。如果你将thread1中的sleep(2)修改成sleep(1),可以观察到大部分时候都是thread1在连续输出。总之,代码中只是使用mutex实现了对共享资源的互斥访问而已,并没有实现同步。


3、验证lock与unlock的作用。


到这里,我只知道mutex可以实现对共享资源(全局变量number)的互斥访问,程序也确实看起来正常运行。不过,它只循环了10次呢。而且不知道你有没有发现一个问题,另一个全局变量i,不也同样是thread1和thread2两个线程的共享资源吗?


让我们将总循环次数提到10万吧:#define MAX=100000,同时将阻塞时间缩到sleep(0.001)让它运行得快一点。然后重新编译并运行一下我们的代码:


例程2:

0bbadb1cbe7d4a4da896640015c53bbd.png

看!最后结果是number=100018,而并不是我们所设置的100000,那么很可能就是由于对于共享变量 i 的访问发生了冲突。我将例程2运行了5次,记录每次最后的number值如下:

100018 100017 100011 100024 100009

为了验证确实是变量 i 导致的问题,而不是其它的什么原因——比如上帝在你的计算机里边掷骰子,我们不妨给 i 也加上互斥。

例程3

我新增了一个新的用于互斥的变量mut_i,并在两个线程函数的循环中都改用lockunlock来保护记录循环迭代的i++语句。

e56659870ad249049c78106dc1855971.png

6c9a68e1c3504c6ba8131f67f1d89843.png

我同样将这个修改后的例程3运行了5次,其中有四次是正确的结果number=100000。可很遗憾,我也不知道在第一次运行中为什么会出现连续两个number=99999,不过我觉得这不一定是资源互斥中所导致的问题。


总之,凡有赋值的操作在多线程环境都要加锁,不论是上述的number++,还是i++。因为,它们都不是原子操作,从机器指令的层面来看,一个高级语言中的i++包含多个步骤,而一条语句还没执行完,可能就已经发生中断,转而去执行另一个线程了。


4、在例程2和例程3的执行结果中,每次最终的number值都是偏大,为什么不会偏小呢?


例程4:


下面我解除了对于变量 number 的互斥保护,而保持对 i 的互斥保护。

fb1d76562e414d0d965e55bc7b669563.png

6ec90ec559fe4390a4cac352832db5e0.png

可以看到我连续运行五次结果中,number 每次都是比10万要偏小。这个具体的细节,其实回忆一下以前数据库并发控制中丢失修改导致的数据不一致问题,就明白了,情况如下图所示。而当 i 偏小的时候,i 的递增次数就小于实际迭代次数,于是导致了 number 的结果偏大。

21055adac1c242b1b53e2c767a6394b6.png

参考

  1. https://blog.csdn.net/JMW1407/article/details/108318960 - int i =1 是原子操作吗?i++是原子操作吗?


相关文章
|
2天前
|
算法 调度 UED
深入理解操作系统:进程调度与优先级队列
【10月更文挑战第31天】在计算机科学的广阔天地中,操作系统扮演着枢纽的角色,它不仅管理着硬件资源,还为应用程序提供了运行的环境。本文将深入浅出地探讨操作系统的核心概念之一——进程调度,以及如何通过优先级队列来优化资源分配。我们将从基础理论出发,逐步过渡到实际应用,最终以代码示例巩固知识点,旨在为读者揭开操作系统高效管理的神秘面纱。
|
1天前
|
Linux 调度 C语言
深入理解操作系统:进程和线程的管理
【10月更文挑战第32天】本文旨在通过浅显易懂的语言和实际代码示例,带领读者探索操作系统中进程与线程的奥秘。我们将从基础知识出发,逐步深入到它们在操作系统中的实现和管理机制,最终通过实践加深对这一核心概念的理解。无论你是编程新手还是希望复习相关知识的资深开发者,这篇文章都将为你提供有价值的见解。
|
2天前
|
算法 调度 UED
深入理解操作系统的进程调度机制
本文旨在探讨操作系统中至关重要的组成部分之一——进程调度机制。通过详细解析进程调度的概念、目的、类型以及实现方式,本文为读者提供了一个全面了解操作系统如何高效管理进程资源的视角。此外,文章还简要介绍了几种常见的进程调度算法,并分析了它们的优缺点,旨在帮助读者更好地理解操作系统内部的复杂性及其对系统性能的影响。
|
3天前
深入理解操作系统:进程与线程的管理
【10月更文挑战第30天】操作系统是计算机系统的核心,它负责管理计算机硬件资源,为应用程序提供基础服务。本文将深入探讨操作系统中进程和线程的概念、区别以及它们在资源管理中的作用。通过本文的学习,读者将能够更好地理解操作系统的工作原理,并掌握进程和线程的管理技巧。
13 2
|
3天前
|
消息中间件 算法 Linux
深入理解操作系统之进程管理
【10月更文挑战第30天】在数字时代的浪潮中,操作系统作为计算机系统的核心,扮演着至关重要的角色。本文将深入浅出地探讨操作系统中的进程管理机制,从进程的概念入手,逐步解析进程的创建、调度、同步与通信等关键过程,并通过实际代码示例,揭示这些理论在Linux系统中的应用。文章旨在为读者提供一扇窥探操作系统深层工作机制的窗口,同时激发对计算科学深层次理解的兴趣和思考。
|
5天前
|
消息中间件 算法 调度
深入理解操作系统:进程管理与调度策略
【10月更文挑战第29天】本文将带领读者深入探讨操作系统中的核心组件之一——进程,并分析进程管理的重要性。我们将从进程的生命周期入手,逐步揭示进程状态转换、进程调度算法以及优先级调度等关键概念。通过理论讲解与代码演示相结合的方式,本文旨在为读者提供对进程调度机制的全面理解,从而帮助读者更好地掌握操作系统的精髓。
17 1
|
2天前
|
算法 Linux 调度
深入理解操作系统之进程调度
【10月更文挑战第31天】在操作系统的心脏跳动中,进程调度扮演着关键角色。本文将深入浅出地探讨进程调度的机制和策略,通过比喻和实例让读者轻松理解这一复杂主题。我们将一起探索不同类型的调度算法,并了解它们如何影响系统性能和用户体验。无论你是初学者还是资深开发者,这篇文章都将为你打开一扇理解操作系统深层工作机制的大门。
8 0
|
3天前
|
安全 Linux 数据安全/隐私保护
Vanilla OS:下一代安全 Linux 发行版
【10月更文挑战第30天】
12 0
Vanilla OS:下一代安全 Linux 发行版
|
6天前
|
人工智能 安全 Linux
|
26天前
|
Unix 物联网 大数据
操作系统的演化与比较:从Unix到Linux
本文将探讨操作系统的历史发展,重点关注Unix和Linux两个主要的操作系统分支。通过分析它们的起源、设计哲学、技术特点以及在现代计算中的影响,我们可以更好地理解操作系统在计算机科学中的核心地位及其未来发展趋势。