iOS多线程之GCD-同步、异步、并发、串行、线程组、栅栏函数、信号量等全网最全的总结

简介: iOS多线程之GCD-同步、异步、并发、串行、线程组、栅栏函数、信号量等全网最全的总结

1. GCD简介

GCD全称:Grand Central Dispatch,译为大型的中枢调度器、纯C语言实现,提供了非常多强大的功能;

优势:旨在替代NSThread等线程技术,充分利用设备的多核。


2. GCD队列

队列(Dispatch Queue)

这里的队列指执行任务的等待队列,即用来存放任务的队列。队列是一种特殊的线性表,采用 FIFO(先进先出)的原则,即新任务总是被插入到队列的末尾,而读取任务的时候总是从队列的头部开始读取。每读取一个任务,则从队列中释放一个任务。


GCD的队列可以分为2大类型:

并发队列(Concurrent Dispatch Queue)

1)可以让多个任务并发(同时)执行(自动开启多个线程同时执行任务)

2)并发功能只有在异步(dispatch_async)函数下才有效


串行队列(Serial Dispatch Queue)

让任务一个接着一个地执行(一个任务执行完毕后,再执行下一个任务)


3. 同步、异步、并发、串行

同步和异步主要影响: 能不能开启新的线程

同步: 在当前线程中执行任务,不具备开启新线程的能力

异步: 在新的线程中执行任务,具备开启新线程的能力


并发和串行主要影响: 任务的执行方式

并发: 多个任务并发(同时)执行

串行: 一个任务执行完毕后,再执行下一个任务


4. 创建队列

可以使用 dispatch_queue_create 方法来创建队列。该方法需要传入两个参数:

第一个参数表示队列的唯一标识符

第二个参数 DISPATCH_QUEUE_SERIAL或NULL: 表示串行队列 DISPATCH_QUEUE_CONCURRENT: 表示并发队列


系统默认提供了主队列,主队列也属于一个串行队列,可通过dispatch_get_main_queue获取主队列,放在主队列中的任务都会放在主线程中执行,系统还提供了一个并发队列,dispatch_get_global_queue() 方法获得全局并发队列。

- (void)gcdCreateQueue {
    dispatch_queue_t queue1 = dispatch_queue_create("com.glt.test.queue1", DISPATCH_QUEUE_CONCURRENT);
    dispatch_queue_t queue2 = dispatch_queue_create("com.glt.test.queue2", DISPATCH_QUEUE_SERIAL);
    dispatch_queue_t queue3 = dispatch_queue_create("com.glt.test.queue3", NULL);
    dispatch_queue_t queue4 = dispatch_get_main_queue();
    dispatch_queue_t queue5 = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    NSLog(@"%@", queue1);
    NSLog(@"%@", queue2);
    NSLog(@"%@", queue3);
    NSLog(@"%@", queue4);
    NSLog(@"%@", queue5);
}
- (void)gcdCreateQueue {
    dispatch_queue_t queue1 = dispatch_queue_create("com.glt.test.queue1", DISPATCH_QUEUE_CONCURRENT);
    dispatch_queue_t queue2 = dispatch_queue_create("com.glt.test.queue2", DISPATCH_QUEUE_SERIAL);
    dispatch_queue_t queue3 = dispatch_queue_create("com.glt.test.queue3", NULL);
    dispatch_queue_t queue4 = dispatch_get_main_queue();
    dispatch_queue_t queue5 = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    NSLog(@"%@", queue1);
    NSLog(@"%@", queue2);
    NSLog(@"%@", queue3);
    NSLog(@"%@", queue4);
    NSLog(@"%@", queue5);
}

运行结果:

2021-04-10 10:51:46.206755+0800 GCD[1482:45167] <OS_dispatch_queue_concurrent: com.glt.test.queue1>
2021-04-10 10:51:46.206850+0800 GCD[1482:45167] <OS_dispatch_queue_serial: com.glt.test.queue2>
2021-04-10 10:51:46.206930+0800 GCD[1482:45167] <OS_dispatch_queue_serial: com.glt.test.queue3>
2021-04-10 10:51:46.207000+0800 GCD[1482:45167] <OS_dispatch_queue_main: com.apple.main-thread>
2021-04-10 10:51:46.207061+0800 GCD[1482:45167] <OS_dispatch_queue_global: com.apple.root.default-qos>

5. 创建任务

dispatch_sync创建同步任务,dispatch_async创建异步线程任务

- (void)gcdCreateTask {
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test.queue1", DISPATCH_QUEUE_CONCURRENT);
    dispatch_sync(queue, ^{
        NSLog(@"同步任务队列");
    });
    dispatch_async(queue, ^{
        NSLog(@"异步任务队列");
    });
}
- (void)gcdCreateTask {
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test.queue1", DISPATCH_QUEUE_CONCURRENT);
    dispatch_sync(queue, ^{
        NSLog(@"同步任务队列");
    });
    dispatch_async(queue, ^{
        NSLog(@"异步任务队列");
    });
}


6. 队列组合

不同的队列组合产生的效果和影响不同,具体总结如下:

接下来通过样例来分别看一下组合效果(文末附源码工程链接):

1)同步+串行

不会开启新的线程、把任务添加到当前线程中、任务一个接一个的执行


- (void)syncSerial {
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_SERIAL);
    dispatch_sync(queue, ^{
        NSLog(@"任务1");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_sync(queue, ^{
        sleep(2);
        NSLog(@"任务2");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_sync(queue, ^{
        NSLog(@"任务3");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
}- (void)syncSerial {
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_SERIAL);
    dispatch_sync(queue, ^{
        NSLog(@"任务1");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_sync(queue, ^{
        sleep(2);
        NSLog(@"任务2");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_sync(queue, ^{
        NSLog(@"任务3");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
}

运行结果:

2021-04-10 10:57:25.460191+0800 GCD[1540:51156] 任务1
2021-04-10 10:57:25.460303+0800 GCD[1540:51156] 当前线程: <NSThread: 0x60000294c180>{number = 1, name = main}
2021-04-10 10:57:27.460477+0800 GCD[1540:51156] 任务2
2021-04-10 10:57:27.460732+0800 GCD[1540:51156] 当前线程: <NSThread: 0x60000294c180>{number = 1, name = main}
2021-04-10 10:57:27.460895+0800 GCD[1540:51156] 任务3
2021-04-10 10:57:27.461054+0800 GCD[1540:51156] 当前线程: <NSThread: 0x60000294c180>{number = 1, name = main}
2021-04-10 10:57:25.460191+0800 GCD[1540:51156] 任务1
2021-04-10 10:57:25.460303+0800 GCD[1540:51156] 当前线程: <NSThread: 0x60000294c180>{number = 1, name = main}
2021-04-10 10:57:27.460477+0800 GCD[1540:51156] 任务2
2021-04-10 10:57:27.460732+0800 GCD[1540:51156] 当前线程: <NSThread: 0x60000294c180>{number = 1, name = main}
2021-04-10 10:57:27.460895+0800 GCD[1540:51156] 任务3
2021-04-10 10:57:27.461054+0800 GCD[1540:51156] 当前线程: <NSThread: 0x60000294c180>{number = 1, name = main}

2)同步+并发

不会开启新的线程、把任务添加到当前线程中、任务一个接一个的执行、并发队列在异步任务中才有效



- (void)syncConcurrent {
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_CONCURRENT);
    dispatch_sync(queue, ^{
        NSLog(@"任务1");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_sync(queue, ^{
        sleep(2);
        NSLog(@"任务2");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_sync(queue, ^{
        NSLog(@"任务3");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
}
- (void)syncConcurrent {
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_CONCURRENT);
    dispatch_sync(queue, ^{
        NSLog(@"任务1");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_sync(queue, ^{
        sleep(2);
        NSLog(@"任务2");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_sync(queue, ^{
        NSLog(@"任务3");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
}

运行结果:

2021-04-10 11:00:59.308934+0800 GCD[1570:54003] 任务1
2021-04-10 11:00:59.309035+0800 GCD[1570:54003] 当前线程: <NSThread: 0x6000031b81c0>{number = 1, name = main}
2021-04-10 11:01:01.309702+0800 GCD[1570:54003] 任务2
2021-04-10 11:01:01.309948+0800 GCD[1570:54003] 当前线程: <NSThread: 0x6000031b81c0>{number = 1, name = main}
2021-04-10 11:01:01.310101+0800 GCD[1570:54003] 任务3
2021-04-10 11:01:01.310262+0800 GCD[1570:54003] 当前线程: <NSThread: 0x6000031b81c0>{number = 1, name = main}

3)异步+串行

会开启新的线程、把任务添加到当前线程中、任务一个接一个的执行


- (void)asyncSerial {
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_SERIAL);
    dispatch_async(queue, ^{
        NSLog(@"任务1");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        sleep(2);
        NSLog(@"任务2");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        NSLog(@"任务3");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
}
- (void)asyncSerial {
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_SERIAL);
    dispatch_async(queue, ^{
        NSLog(@"任务1");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        sleep(2);
        NSLog(@"任务2");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        NSLog(@"任务3");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
}

运行结果:

2021-04-10 11:04:22.612780+0800 GCD[1612:57386] 任务1
2021-04-10 11:04:22.612881+0800 GCD[1612:57386] 当前线程: <NSThread: 0x6000009a2a40>{number = 5, name = (null)}
2021-04-10 11:04:24.615244+0800 GCD[1612:57386] 任务2
2021-04-10 11:04:24.615514+0800 GCD[1612:57386] 当前线程: <NSThread: 0x6000009a2a40>{number = 5, name = (null)}
2021-04-10 11:04:24.615686+0800 GCD[1612:57386] 任务3
2021-04-10 11:04:24.615854+0800 GCD[1612:57386] 当前线程: <NSThread: 0x6000009a2a40>{number = 5, name = (null)}

4)异步+并发

会开启新的线程、把任务添加到新的线程中、并发的执行任务


- (void)asyncConcurrent {
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_CONCURRENT);
    dispatch_async(queue, ^{
        NSLog(@"任务1 - %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        sleep(2);
        NSLog(@"任务2 - %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        NSLog(@"任务3 - %@", [NSThread currentThread]);
    });
}

运行结果:

2021-04-10 11:09:06.322720+0800 GCD[1664:61535] 任务1 - <NSThread: 0x6000002d1700>{number = 6, name = (null)}
2021-04-10 11:09:06.322726+0800 GCD[1664:61536] 任务3 - <NSThread: 0x6000002c5e80>{number = 7, name = (null)}
2021-04-10 11:09:08.326379+0800 GCD[1664:61541] 任务2 - <NSThread: 0x60000029a840>{number = 4, name = (null)}2021-04-10 11:09:06.322720+0800 GCD[1664:61535] 任务1 - <NSThread: 0x6000002d1700>{number = 6, name = (null)}
2021-04-10 11:09:06.322726+0800 GCD[1664:61536] 任务3 - <NSThread: 0x6000002c5e80>{number = 7, name = (null)}
2021-04-10 11:09:08.326379+0800 GCD[1664:61541] 任务2 - <NSThread: 0x60000029a840>{number = 4, name = (null)}

5)同步+主队列

不会开启新的线程、把任务添加到当前线程中、产生死锁(2和3相互等待产生死锁)


- (void)syncMain {
//    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_SERIAL);//不会产生死锁
    dispatch_queue_t queue = dispatch_get_main_queue();//产生死锁
    NSLog(@"1");
    dispatch_sync(queue, ^{
        NSLog(@"2");
    });
    NSLog(@"3");
}
- (void)syncMain {
//    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_SERIAL);//不会产生死锁
    dispatch_queue_t queue = dispatch_get_main_queue();//产生死锁
    NSLog(@"1");
    dispatch_sync(queue, ^{
        NSLog(@"2");
    });
    NSLog(@"3");
}

运行结果:


2021-04-10 11:11:30.578822+0800 GCD[1694:64014] 1

6)异步+主队列

不会开启新的线程、把任务添加到当前线程中、任务一个接一个的执行

- (void)asyncMain {
    dispatch_queue_t queue = dispatch_get_main_queue();
    NSLog(@"1");
    dispatch_async(queue, ^{
        NSLog(@"2");
    });
    NSLog(@"3");
}

运行结果:

2021-04-10 11:24:34.478703+0800 GCD[1755:73277] 1
2021-04-10 11:24:34.478825+0800 GCD[1755:73277] 3
2021-04-10 11:24:34.481464+0800 GCD[1755:73277] 2
2021-04-10 11:24:34.478703+0800 GCD[1755:73277] 1
2021-04-10 11:24:34.478825+0800 GCD[1755:73277] 3
2021-04-10 11:24:34.481464+0800 GCD[1755:73277] 2

7)同步+全局队列

会开启新的线程、把任务添加到当前线程中、没有开启新的线程、任务一个接一个的执行

- (void)syncGlobal {
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    dispatch_sync(queue, ^{
        NSLog(@"任务1");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_sync(queue, ^{
        sleep(2);
        NSLog(@"任务2");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_sync(queue, ^{
        NSLog(@"任务3");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
}
- (void)syncGlobal {
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    dispatch_sync(queue, ^{
        NSLog(@"任务1");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_sync(queue, ^{
        sleep(2);
        NSLog(@"任务2");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
    dispatch_sync(queue, ^{
        NSLog(@"任务3");
        NSLog(@"当前线程: %@", [NSThread currentThread]);
    });
}

运行结果:

2021-04-10 11:26:45.632522+0800 GCD[1778:75212] 任务1
2021-04-10 11:26:45.632626+0800 GCD[1778:75212] 当前线程: <NSThread: 0x600003910900>{number = 1, name = main}
2021-04-10 11:26:47.633010+0800 GCD[1778:75212] 任务2
2021-04-10 11:26:47.633255+0800 GCD[1778:75212] 当前线程: <NSThread: 0x600003910900>{number = 1, name = main}
2021-04-10 11:26:47.633437+0800 GCD[1778:75212] 任务3
2021-04-10 11:26:47.633594+0800 GCD[1778:75212] 当前线程: <NSThread: 0x600003910900>{number = 1, name = main}

8)异步+全局队列

会开启新的线程、把任务添加到新的线程中、并发的执行任务

- (void)asyncGlobal {
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    dispatch_async(queue, ^{
        NSLog(@"任务1 - %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        sleep(2);
        NSLog(@"任务2 - %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        NSLog(@"任务3 - %@", [NSThread currentThread]);
    });
}
- (void)asyncGlobal {
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    dispatch_async(queue, ^{
        NSLog(@"任务1 - %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        sleep(2);
        NSLog(@"任务2 - %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        NSLog(@"任务3 - %@", [NSThread currentThread]);
    });
}

运行结果:

2021-04-10 11:30:37.836797+0800 GCD[1814:79285] 任务1 - <NSThread: 0x6000032fac40>{number = 4, name = (null)}
2021-04-10 11:30:37.836805+0800 GCD[1814:79287] 任务3 - <NSThread: 0x6000032a96c0>{number = 6, name = (null)}
2021-04-10 11:30:39.836879+0800 GCD[1814:79283] 任务2 - <NSThread: 0x6000032a9080>{number = 7, name = (null)}

9)串行+异步+同步

死锁


- (void)concurrentSyncAsync {
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test.queue1", DISPATCH_QUEUE_SERIAL);
    NSLog(@"1");
    dispatch_async(queue, ^{
        NSLog(@"4");
        dispatch_sync(queue, ^{
            NSLog(@"2");
        });
        NSLog(@"3");
    });
    NSLog(@"5");
}

运行结果:

2021-04-10 11:33:34.234259+0800 GCD[1834:81537] 1
2021-04-10 11:33:34.234365+0800 GCD[1834:81537] 5
2021-04-10 11:33:34.234377+0800 GCD[1834:81712] 4
2021-04-10 11:33:34.234259+0800 GCD[1834:81537] 1
2021-04-10 11:33:34.234365+0800 GCD[1834:81537] 5
2021-04-10 11:33:34.234377+0800 GCD[1834:81712] 4


7. 线程间通信

子线程执行耗时操作(图片下载、图片合成、文件下载等),回到主线程刷新UI

- (void)gcdMessage {
    NSLog(@"1");
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(2);
        dispatch_async(dispatch_get_main_queue(), ^{
            NSLog(@"2-刷新UI");
        });
    });
    NSLog(@"3");
}
- (void)gcdMessage {
    NSLog(@"1");
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(2);
        dispatch_async(dispatch_get_main_queue(), ^{
            NSLog(@"2-刷新UI");
        });
    });
    NSLog(@"3");
}

运行结果:

2021-04-10 11:39:23.991812+0800 GCD[1865:85789] 1
2021-04-10 11:39:23.991908+0800 GCD[1865:85789] 3
2021-04-10 11:39:25.992573+0800 GCD[1865:85789] 2-刷新UI2021-04-10 11:39:23.991812+0800 GCD[1865:85789] 1
2021-04-10 11:39:23.991908+0800 GCD[1865:85789] 3
2021-04-10 11:39:25.992573+0800 GCD[1865:85789] 2-刷新UI

8. 栅栏函数

栅栏函数:dispatch_barrier_async会等待前边追加到并发队列中的任务全部执行完毕之后,再将指定的任务追加到该异步队列中;并且栅栏函数只能使用自己创建的并发队列、全局队列没有效果(使用全局队列相当于普通的异步任务),如果是主队列则依次执行;

dispatch_barrier_sync与dispatch_barrier_sync区别是:dispatch_barrier_sync内部的函数是在主线程中执行,dispatch_barrier_sync执行的任务是在新开辟的子线程中执行;

- (void)barrierTask {
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_CONCURRENT);//栅栏函数有效果
//    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);//栅栏函数无效果
//    dispatch_queue_t queue = dispatch_get_main_queue();//栅栏函数有效果、队列依次执行
    dispatch_async(queue, ^{
        NSLog(@"任务1 - %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        sleep(2);
        NSLog(@"任务2 - %@", [NSThread currentThread]);
    });
    dispatch_barrier_sync(queue, ^{
        sleep(4);
        NSLog(@"栅栏任务 - %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        NSLog(@"任务3 - %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        NSLog(@"任务4 - %@", [NSThread currentThread]);
    });
}
- (void)barrierTask {
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_CONCURRENT);//栅栏函数有效果
//    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);//栅栏函数无效果
//    dispatch_queue_t queue = dispatch_get_main_queue();//栅栏函数有效果、队列依次执行
    dispatch_async(queue, ^{
        NSLog(@"任务1 - %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        sleep(2);
        NSLog(@"任务2 - %@", [NSThread currentThread]);
    });
    dispatch_barrier_sync(queue, ^{
        sleep(4);
        NSLog(@"栅栏任务 - %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        NSLog(@"任务3 - %@", [NSThread currentThread]);
    });
    dispatch_async(queue, ^{
        NSLog(@"任务4 - %@", [NSThread currentThread]);
    });
}

运行结果:

2021-04-10 11:44:44.907322+0800 GCD[1923:90606] 任务1 - <NSThread: 0x600000f3cdc0>{number = 6, name = (null)}
2021-04-10 11:44:46.911944+0800 GCD[1923:90607] 任务2 - <NSThread: 0x600000f2e2c0>{number = 5, name = (null)}
2021-04-10 11:44:50.913348+0800 GCD[1923:90420] 栅栏任务 - <NSThread: 0x600000f60900>{number = 1, name = main}
2021-04-10 11:44:50.913659+0800 GCD[1923:90609] 任务4 - <NSThread: 0x600000f64fc0>{number = 4, name = (null)}
2021-04-10 11:44:50.913642+0800 GCD[1923:90607] 任务3 - <NSThread: 0x600000f2e2c0>{number = 5, name = (null)}


9. 延时执行任务

- (void)gcdAfter {
    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
        NSLog(@"延时执行任务");
    });
}
- (void)gcdAfter {
    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
        NSLog(@"延时执行任务");
    });
}


10. dispatch_once_t

仅执行1次,多线程环境下保证线程安全,注意:如果将onceToken设置为0,下次再调用依旧会执行,常用于销毁单例

- (void)gcdOnce {
    static dispatch_once_t onceToken;
    dispatch_once(&onceToken, ^{
        NSLog(@"only one");
    });
}


11. dispatch_apply

按照指定的次数将指定的任务追加到指定的队列中,并等待全部队列执行结束,无论是在串行队列,还是并发队列中,dispatch_apply 都会等待全部任务执行完毕


- (void)gcdApply {
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_CONCURRENT);
    NSLog(@"begain");
    dispatch_apply(6, queue, ^(size_t time) {
        NSLog(@"%zu - %@", time, [NSThread currentThread]);
    });
    NSLog(@"end");
}

运行结果:


2021-04-10 11:56:20.440608+0800 GCD[1959:97881] begain
2021-04-10 11:56:20.440731+0800 GCD[1959:97881] 0 - <NSThread: 0x600002b94a00>{number = 1, name = main}
2021-04-10 11:56:20.440806+0800 GCD[1959:98094] 1 - <NSThread: 0x600002bd5680>{number = 3, name = (null)}
2021-04-10 11:56:20.440815+0800 GCD[1959:97881] 3 - <NSThread: 0x600002b94a00>{number = 1, name = main}
2021-04-10 11:56:20.440816+0800 GCD[1959:98090] 2 - <NSThread: 0x600002b99980>{number = 6, name = (null)}
2021-04-10 11:56:20.440839+0800 GCD[1959:98093] 4 - <NSThread: 0x600002bd5980>{number = 5, name = (null)}
2021-04-10 11:56:20.440837+0800 GCD[1959:98089] 5 - <NSThread: 0x600002bcc880>{number = 4, name = (null)}
2021-04-10 11:56:20.440918+0800 GCD[1959:97881] end
2021-04-10 11:56:20.440608+0800 GCD[1959:97881] begain
2021-04-10 11:56:20.440731+0800 GCD[1959:97881] 0 - <NSThread: 0x600002b94a00>{number = 1, name = main}
2021-04-10 11:56:20.440806+0800 GCD[1959:98094] 1 - <NSThread: 0x600002bd5680>{number = 3, name = (null)}
2021-04-10 11:56:20.440815+0800 GCD[1959:97881] 3 - <NSThread: 0x600002b94a00>{number = 1, name = main}
2021-04-10 11:56:20.440816+0800 GCD[1959:98090] 2 - <NSThread: 0x600002b99980>{number = 6, name = (null)}
2021-04-10 11:56:20.440839+0800 GCD[1959:98093] 4 - <NSThread: 0x600002bd5980>{number = 5, name = (null)}
2021-04-10 11:56:20.440837+0800 GCD[1959:98089] 5 - <NSThread: 0x600002bcc880>{number = 4, name = (null)}
2021-04-10 11:56:20.440918+0800 GCD[1959:97881] end


12. 线程组

1)dispatch_group_async: 先把任务放到队列中,然后将队列放入队列组中

2)dispatch_group_notify: 监听dispatch_group_async中任务的完成状态,当所有的任务都执行完成后,最后执行dispatch_group_notify内部的任务

3)dispatch_group_wait: 阻塞当前任务,会先执行等待之前的任务完成后,再执行等待后的任务

4)dispatch_group_enter会将任务数+1,dispatch_group_leave会将任务数-1,当任务数为0的时候再执行dispatch_group_notify中的任务

场景描述:我们要等前3个任务完成以后再执行其他的任务,并且这3个任务内部又有回到其他线程的操作


- (void)gcdGroup {
    dispatch_group_t group = dispatch_group_create();
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_CONCURRENT);
    dispatch_group_enter(group);
    dispatch_group_async(group, queue, ^{
        NSLog(@"任务1 - %@", [NSThread currentThread]);
        dispatch_group_leave(group);
    });
    dispatch_group_enter(group);
    dispatch_group_async(group, queue, ^{
        dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
            NSLog(@"任务2 - %@", [NSThread currentThread]);
            dispatch_group_leave(group);
        });
    });
//    dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
    dispatch_group_enter(group);
    dispatch_group_async(group, queue, ^{
        NSLog(@"任务3 - %@", [NSThread currentThread]);
        dispatch_group_leave(group);
    });
    dispatch_group_notify(group, queue, ^{
        NSLog(@"任务执行完毕 - %@", [NSThread currentThread]);
    });
}
- (void)gcdGroup {
    dispatch_group_t group = dispatch_group_create();
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_CONCURRENT);
    dispatch_group_enter(group);
    dispatch_group_async(group, queue, ^{
        NSLog(@"任务1 - %@", [NSThread currentThread]);
        dispatch_group_leave(group);
    });
    dispatch_group_enter(group);
    dispatch_group_async(group, queue, ^{
        dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
            NSLog(@"任务2 - %@", [NSThread currentThread]);
            dispatch_group_leave(group);
        });
    });
//    dispatch_group_wait(group, DISPATCH_TIME_FOREVER);
    dispatch_group_enter(group);
    dispatch_group_async(group, queue, ^{
        NSLog(@"任务3 - %@", [NSThread currentThread]);
        dispatch_group_leave(group);
    });
    dispatch_group_notify(group, queue, ^{
        NSLog(@"任务执行完毕 - %@", [NSThread currentThread]);
    });
}

运行结果:

2021-04-10 12:00:52.647107+0800 GCD[1989:101516] 任务3 - <NSThread: 0x60000097e9c0>{number = 4, name = (null)}
2021-04-10 12:00:52.647116+0800 GCD[1989:101520] 任务1 - <NSThread: 0x600000940f40>{number = 6, name = (null)}
2021-04-10 12:00:55.647281+0800 GCD[1989:101346] 任务2 - <NSThread: 0x6000009501c0>{number = 1, name = main}
2021-04-10 12:00:55.647530+0800 GCD[1989:101516] 任务执行完毕 - <NSThread: 0x60000097e9c0>{number = 4, name = (null)}
2021-04-10 12:00:52.647107+0800 GCD[1989:101516] 任务3 - <NSThread: 0x60000097e9c0>{number = 4, name = (null)}
2021-04-10 12:00:52.647116+0800 GCD[1989:101520] 任务1 - <NSThread: 0x600000940f40>{number = 6, name = (null)}
2021-04-10 12:00:55.647281+0800 GCD[1989:101346] 任务2 - <NSThread: 0x6000009501c0>{number = 1, name = main}
2021-04-10 12:00:55.647530+0800 GCD[1989:101516] 任务执行完毕 - <NSThread: 0x60000097e9c0>{number = 4, name = (null)}

13. 信号量

dispatch_semaphore_create:创建一个Semaphore并设置信号的总量;

dispatch_semaphore_signal:发送信号,让信号+1;

dispatch_semaphore_wait:可以使总信号量-1,信号总量小于0时就会等待,阻塞所在线程;

dispatch_semaphore作用:

1)保持线程同步,将异步执行任务转换为同步执行任务

2保证线程安全,为线程加锁


- (void)gcdSemaphoreSync {
    NSInteger ret = [self gcdRet];
    NSLog(@"异步获取函数返回值 - %ld", ret);
}
- (NSInteger)gcdRet {
    __block NSInteger count = 0;
    dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_CONCURRENT);
    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2 * NSEC_PER_SEC)), queue, ^{//模拟异步网络请求
        count = 999;
        dispatch_semaphore_signal(semaphore);//+1后为0则继续向下执行
    });
    dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);//-1后小于0开始阻塞等待
    return count;
}
//保证线程安全,为线程加锁
- (void)gcdSemaphoreLock {
    if (!_semaphore) {
        _semaphore = dispatch_semaphore_create(1);
    }
    dispatch_queue_t queue = dispatch_queue_create("com.glt.test", DISPATCH_QUEUE_CONCURRENT);
    dispatch_async(queue, ^{
        dispatch_semaphore_wait(self->_semaphore, DISPATCH_TIME_FOREVER);//-1后等于0开始向下进行,之后再执行到这里此处会小于0,产生阻塞,会等待解锁后继续向下执行
        NSLog(@"线程锁-begain");
        sleep(3);
        NSLog(@"线程锁-end");
        dispatch_semaphore_signal(self->_semaphore);//+1后为0,解锁,则继续执行
    });
}

方法调用:


  [self gcdSemaphoreSync];
    [self gcdSemaphoreLock];
    [self gcdSemaphoreLock];
    [self gcdSemaphoreLock];  [self gcdSemaphoreSync];
    [self gcdSemaphoreLock];
    [self gcdSemaphoreLock];
    [self gcdSemaphoreLock];

运行结果:


2021-04-10 12:04:02.670569+0800 GCD[2009:103890] 异步获取函数返回值 - 999
2021-04-10 12:04:02.670715+0800 GCD[2009:104065] 线程锁-begain
2021-04-10 12:04:05.671743+0800 GCD[2009:104065] 线程锁-end
2021-04-10 12:04:05.672013+0800 GCD[2009:104062] 线程锁-begain
2021-04-10 12:04:08.677301+0800 GCD[2009:104062] 线程锁-end
2021-04-10 12:04:08.677575+0800 GCD[2009:104064] 线程锁-begain
2021-04-10 12:04:11.678193+0800 GCD[2009:104064] 线程锁-end
2021-04-10 12:04:02.670569+0800 GCD[2009:103890] 异步获取函数返回值 - 999
2021-04-10 12:04:02.670715+0800 GCD[2009:104065] 线程锁-begain
2021-04-10 12:04:05.671743+0800 GCD[2009:104065] 线程锁-end
2021-04-10 12:04:05.672013+0800 GCD[2009:104062] 线程锁-begain
2021-04-10 12:04:08.677301+0800 GCD[2009:104062] 线程锁-end
2021-04-10 12:04:08.677575+0800 GCD[2009:104064] 线程锁-begain
2021-04-10 12:04:11.678193+0800 GCD[2009:104064] 线程锁-end

源码:https://github.com/gltwy/public

相关文章
|
4月前
|
数据采集 存储 JSON
Python爬取知乎评论:多线程与异步爬虫的性能优化
Python爬取知乎评论:多线程与异步爬虫的性能优化
|
4月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
186 0
|
4月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
5月前
|
Java 数据挖掘 调度
Java 多线程创建零基础入门新手指南:从零开始全面学习多线程创建方法
本文从零基础角度出发,深入浅出地讲解Java多线程的创建方式。内容涵盖继承`Thread`类、实现`Runnable`接口、使用`Callable`和`Future`接口以及线程池的创建与管理等核心知识点。通过代码示例与应用场景分析,帮助读者理解每种方式的特点及适用场景,理论结合实践,轻松掌握Java多线程编程 essentials。
337 5
|
9月前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
325 20
|
9月前
|
缓存 安全 Java
面试中的难题:线程异步执行后如何共享数据?
本文通过一个面试故事,详细讲解了Java中线程内部开启异步操作后如何安全地共享数据。介绍了异步操作的基本概念及常见实现方式(如CompletableFuture、ExecutorService),并重点探讨了volatile关键字、CountDownLatch和CompletableFuture等工具在线程间数据共享中的应用,帮助读者理解线程安全和内存可见性问题。通过这些方法,可以有效解决多线程环境下的数据共享挑战,提升编程效率和代码健壮性。
310 6
|
9月前
|
安全 Java C#
Unity多线程使用(线程池)
在C#中使用线程池需引用`System.Threading`。创建单个线程时,务必在Unity程序停止前关闭线程(如使用`Thread.Abort()`),否则可能导致崩溃。示例代码展示了如何创建和管理线程,确保在线程中执行任务并在主线程中处理结果。完整代码包括线程池队列、主线程检查及线程安全的操作队列管理,确保多线程操作的稳定性和安全性。
|
10月前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
379 17
|
11月前
|
NoSQL Redis
单线程传奇Redis,为何引入多线程?
Redis 4.0 引入多线程支持,主要用于后台对象删除、处理阻塞命令和网络 I/O 等操作,以提高并发性和性能。尽管如此,Redis 仍保留单线程执行模型处理客户端请求,确保高效性和简单性。多线程仅用于优化后台任务,如异步删除过期对象和分担读写操作,从而提升整体性能。
197 1
|
1月前
|
Java
如何在Java中进行多线程编程
Java多线程编程常用方式包括:继承Thread类、实现Runnable接口、Callable接口(可返回结果)及使用线程池。推荐线程池以提升性能,避免频繁创建线程。结合同步与通信机制,可有效管理并发任务。
138 6