Pandas 高级教程——高级分组与聚合

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Pandas 高级教程——高级分组与聚合

Python Pandas 高级教程:高级分组与聚合

Pandas 中的分组与聚合操作是数据分析中常用的技术,能够对数据进行更复杂的处理和分析。在本篇博客中,我们将深入介绍 Pandas 中的高级分组与聚合功能,通过实例演示如何灵活应用这些技术。

1. 安装 Pandas

确保你已经安装了 Pandas。如果尚未安装,可以使用以下命令:

pip install pandas

2. 导入 Pandas 库

在使用 Pandas 进行高级分组与聚合之前,导入 Pandas 库:

import pandas as pd

3. 创建示例数据

在学习高级分组与聚合之前,首先创建一个示例数据集:

data = {
   
    'Category': ['A', 'B', 'A', 'B', 'A', 'B'],
    'Value1': [10, 15, 20, 25, 30, 35],
    'Value2': [100, 150, 200, 250, 300, 350],
    'Label': ['X', 'Y', 'Z', 'X', 'Y', 'Z']
}

df = pd.DataFrame(data)

4. 自定义聚合函数

在高级分组与聚合中,我们可以定义自己的聚合函数。例如,定义一个计算均值和标准差的函数:

def custom_aggregation(series):
    return pd.Series([series.mean(), series.std()], index=['mean', 'std'])

5. 高级分组与聚合

5.1 使用 agg 方法

agg 方法可以同时应用多个聚合函数,并对多列进行不同的聚合:

# 高级分组与聚合
result = df.groupby('Category').agg({
   'Value1': 'sum', 'Value2': custom_aggregation})

5.2 使用多个聚合函数

# 使用多个聚合函数
result = df.groupby('Category').agg({
   
    'Value1': ['sum', 'mean', 'min', 'max'],
    'Value2': custom_aggregation
})

5.3 使用 transform 方法

transform 方法可以将聚合结果广播回原始 DataFrame:

# 使用 transform 方法
df['Value1_Sum'] = df.groupby('Category')['Value1'].transform('sum')

6. 高级分组与多级索引

6.1 创建多级索引

# 创建多级索引
multi_index_df = df.groupby(['Category', 'Label']).agg({
   'Value1': 'mean'})

6.2 多级索引的交换与切片

# 多级索引的交换与切片
swapped_df = multi_index_df.swaplevel().sort_index()
sliced_df = swapped_df.loc['X':'Y']

7. 自定义聚合函数的应用

7.1 使用 apply 方法

apply 方法可以更灵活地应用自定义聚合函数:

# 使用 apply 方法
result_apply = df.groupby('Category').apply(lambda group: custom_aggregation(group['Value1']))
result_apply.columns = ['mean', 'std']

8. 处理缺失值

在进行高级分组与聚合时,可以使用 dropna 方法处理缺失值:

# 处理缺失值
result_dropna = df.groupby('Category').agg({
   'Value1': 'sum', 'Value2': 'mean'}).dropna()

9. 总结

通过学习以上 Pandas 中的高级分组与聚合操作,你可以更灵活地处理各种数据集,实现更复杂的分析需求。这些技术在实际数据分析和建模中经常用到,希望这篇博客能够帮助你更好地理解和运用 Pandas 中高级的分组与聚合功能。

目录
相关文章
|
10天前
|
Python
|
14天前
|
SQL 数据采集 数据挖掘
Pandas 教程
10月更文挑战第25天
25 2
|
6月前
|
数据可视化 数据挖掘 数据处理
进阶 pandas DataFrame:挖掘高级数据处理技巧
【5月更文挑战第19天】本文介绍了Pandas DataFrame的高级使用技巧,包括数据重塑(如`pivot`和`melt`)、字符串处理(如提取和替换)、日期时间处理(如解析和时间序列操作)、合并与连接(如`merge`和`concat`),以及使用`apply()`应用自定义函数。这些技巧能提升数据处理效率,适用于复杂数据分析任务。推荐进一步学习和探索Pandas的高级功能。
|
2月前
|
数据挖掘 数据处理 Python
Pandas中的数据聚合神器:agg 方法
Pandas中的数据聚合神器:agg 方法
64 0
|
3月前
|
Python
掌握pandas中的时序数据分组运算
掌握pandas中的时序数据分组运算
|
3月前
|
存储 JSON 数据格式
Pandas 使用教程 CSV - CSV 转 JSON
Pandas 使用教程 CSV - CSV 转 JSON
38 0
|
3月前
|
JSON 数据格式 Python
Pandas 使用教程 JSON
Pandas 使用教程 JSON
41 0
|
3月前
|
SQL 数据采集 JSON
Pandas 使用教程 Series、DataFrame
Pandas 使用教程 Series、DataFrame
61 0
|
6月前
|
数据挖掘 数据处理 Python
【Python DataFrame 专栏】深入探索 pandas DataFrame:高级数据处理技巧
【5月更文挑战第19天】在 Python 数据分析中,pandas DataFrame 是核心工具。本文介绍了几个高级技巧:1) 横向合并 DataFrame;2) 数据分组与聚合;3) 处理缺失值;4) 数据重塑;5) 条件筛选;6) 使用函数处理数据。掌握这些技巧能提升数据处理效率和分析深度,助你更好地发掘数据价值。
64 1
【Python DataFrame 专栏】深入探索 pandas DataFrame:高级数据处理技巧