Python中ArcPy实现栅格图像文件批量掩膜与批量重采样

简介: Python中ArcPy实现栅格图像文件批量掩膜与批量重采样

  本文介绍基于PythonArcpy模块,对大量栅格遥感影像文件进行批量掩膜重采样的操作。

  首先,我们来明确一下本文的具体需求。现有一个存储有大量.tif格式遥感影像的文件夹;且其中除了.tif格式的遥感影像文件外,还具有其它格式的文件。

  我们希望,依据一个已知的面要素矢量图层文件,对上述文件夹中的全部.tif格式遥感影像进行掩膜,并对掩膜后的遥感影像文件再分别加以批量重采样,使得其空间分辨率为1000 m。

  明确了需求后,我们就可以开始具体的操作。首先,本文所需用到的代码如下。

# -*- coding: utf-8 -*-
"""
Created on Fri Apr 15 16:44:26 2022
@author: fkxxgis
"""
import arcpy
from arcpy.sa import *
tif_file_path="E:/LST/Data/NDVI/03_Mosaic/"
shp_file="E:/LST/Data/Region/YellowRiver_nineprovince.shp"
out_file_path="E:/LST/Data/NDVI/04_Mask/"
resample_file_path="E:/LST/Data/NDVI/05_Resample/"
arcpy.env.workspace=tif_file_path
arcpy.env.extent=shp_file
tif_file_name=arcpy.ListRasters("*","tif")
for tif_file in tif_file_name:
    mask_result=ExtractByMask(tif_file,shp_file)
    mask_result_path=out_file_path+"/"+tif_file.strip(".tif")+"_Mask.tif"
    mask_result.save(mask_result_path)
arcpy.env.workspace=out_file_path
tif_file_name=arcpy.ListRasters("*","tif")
for tif_file in tif_file_name:
    resample_file_name=tif_file.strip(".tif")+"_Re.tif"
    arcpy.Resample_management(tif_file,resample_file_path+resample_file_name,
                              1000,"BILINEAR")

  其中,tif_file_path是原有掩膜前遥感图像的保存路径,shp_file是已知面要素矢量图层文件的保存路径,out_file_path是我们新生成的掩膜后遥感影像的保存路径,resample_file_path则是最终重采样后遥感影像的保存路径。

  在这里,我们首先利用arcpy.ListRasters()函数,获取路径下原有的全部.tif格式的图像文件,并存放于tif_file_name中;随后,遍历tif_file_path路径下全部.tif格式图像文件(即遍历tif_file_name),并利用ExtractByMask()函数进行掩膜操作;其次,对于掩膜好的图层,在其原有文件名后添加"_Mask.tif"后缀,作为新文件的文件名。

  对全部图像文件完成掩膜操作后,我们继续进行重采样操作。和前述代码思路类似,我们依然还是先遍历文件,并在其原有文件名后添加"_Re.tif"后缀,作为新文件的文件名;随后,利用Resample_management()函数进行重采样。其中,1000表示重采样的空间分辨率,在这里单位为米;"BILINEAR"表示用双线性插值的方法完成重采样。

  以上便是本次操作的全部代码;我们这里选择在 IDLE (Python GUI) 中运行代码。运行完毕,得到的一个结果文件如下图;可以看到,遥感影像已经完成了掩膜,且空间分辨率已经为1000 m。

欢迎关注公众号/CSDN/知乎/微博:疯狂学习GIS


相关文章
|
9天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
28 3
|
30天前
|
安全 Linux 数据安全/隐私保护
python知识点100篇系列(15)-加密python源代码为pyd文件
【10月更文挑战第5天】为了保护Python源码不被查看,可将其编译成二进制文件(Windows下为.pyd,Linux下为.so)。以Python3.8为例,通过Cython工具,先写好Python代码并加入`# cython: language_level=3`指令,安装easycython库后,使用`easycython *.py`命令编译源文件,最终生成.pyd文件供直接导入使用。
python知识点100篇系列(15)-加密python源代码为pyd文件
|
12天前
|
开发者 Python
Python中__init__.py文件的作用
`__init__.py`文件在Python包管理中扮演着重要角色,通过标识目录为包、初始化包、控制导入行为、支持递归包结构以及定义包的命名空间,`__init__.py`文件为组织和管理Python代码提供了强大支持。理解并正确使用 `__init__.py`文件,可以帮助开发者更好地组织代码,提高代码的可维护性和可读性。
15 2
|
1月前
|
Linux 区块链 Python
Python实用记录(十三):python脚本打包exe文件并运行
这篇文章介绍了如何使用PyInstaller将Python脚本打包成可执行文件(exe),并提供了详细的步骤和注意事项。
51 1
Python实用记录(十三):python脚本打包exe文件并运行
|
28天前
|
Java Python
> python知识点100篇系列(19)-使用python下载文件的几种方式
【10月更文挑战第7天】本文介绍了使用Python下载文件的五种方法,包括使用requests、wget、线程池、urllib3和asyncio模块。每种方法适用于不同的场景,如单文件下载、多文件并发下载等,提供了丰富的选择。
|
29天前
|
数据安全/隐私保护 流计算 开发者
python知识点100篇系列(18)-解析m3u8文件的下载视频
【10月更文挑战第6天】m3u8是苹果公司推出的一种视频播放标准,采用UTF-8编码,主要用于记录视频的网络地址。HLS(Http Live Streaming)是苹果公司提出的一种基于HTTP的流媒体传输协议,通过m3u8索引文件按序访问ts文件,实现音视频播放。本文介绍了如何通过浏览器找到m3u8文件,解析m3u8文件获取ts文件地址,下载ts文件并解密(如有必要),最后使用ffmpeg合并ts文件为mp4文件。
|
1月前
|
JSON 数据格式 Python
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
这篇文章介绍了一个Python脚本,用于统计TXT或JSON文件中特定单词的出现次数。它包含两个函数,分别处理文本和JSON文件,并通过命令行参数接收文件路径、目标单词和文件格式。文章还提供了代码逻辑的解释和示例用法。
41 0
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
|
5月前
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
187 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
5月前
|
机器学习/深度学习 人工智能 算法
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
乐器识别系统。使用Python为主要编程语言,基于人工智能框架库TensorFlow搭建ResNet50卷积神经网络算法,通过对30种乐器('迪吉里杜管', '铃鼓', '木琴', '手风琴', '阿尔卑斯号角', '风笛', '班卓琴', '邦戈鼓', '卡萨巴', '响板', '单簧管', '古钢琴', '手风琴(六角形)', '鼓', '扬琴', '长笛', '刮瓜', '吉他', '口琴', '竖琴', '沙槌', '陶笛', '钢琴', '萨克斯管', '锡塔尔琴', '钢鼓', '长号', '小号', '大号', '小提琴')的图像数据集进行训练,得到一个训练精度较高的模型,并将其
75 0
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
|
3月前
|
机器学习/深度学习 人工智能 算法
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
眼疾识别系统,使用Python作为主要编程语言进行开发,基于深度学习等技术使用TensorFlow搭建ResNet50卷积神经网络算法,通过对眼疾图片4种数据集进行训练('白内障', '糖尿病性视网膜病变', '青光眼', '正常'),最终得到一个识别精确度较高的模型。然后使用Django框架开发Web网页端可视化操作界面,实现用户上传一张眼疾图片识别其名称。
81 9
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow