【数据结构】双向链表中删除节点的方法实现(代码+详解)

简介: 【数据结构】双向链表中删除节点的方法实现(代码+详解)

【数据结构】双向链表中删除节点方法的实现(代码+详解)

分析

💕 在双向链表中,删除一个结点可能出现以下几种情况,取决于待删除的结点在链表中的位置:

  1. 删除头结点:
  • 如果待删除的结点是头结点,需要特殊处理,更新头结点为原头结点的后继结点,并释放原头结点的内存。
  1. 删除尾结点:
  • 如果待删除的结点是尾结点,需要特殊处理,更新尾结点为原尾结点的前驱结点,并释放原尾结点的内存。
  1. 删除中间结点:
  • 如果待删除的结点位于链表的中间位置,只需调整前驱结点和后继结点的指针,将它们连接在一起,并释放待删除结点的内存。

💕 这些情况可以进一步细分为以下几类:

  • 删除头结点
  • 头结点是唯一结点
  • 头结点后还有其他结点
  • 删除尾结点
  • 尾结点是唯一结点
  • 尾结点前还有其他结点
  • 删除中间结点

代码

#include <stdio.h>
#include <stdlib.h>
// 定义双向链表的结点结构
typedef struct Node {
    int data;
    struct Node* prev;  // 前驱指针
    struct Node* next;  // 后继指针
} Node;
// 删除双向链表的头结点
Node* deleteHead(Node* head) {
    if (head == NULL) {
        printf("Error: Empty list\n");
        return NULL;
    }
    Node* newHead = head->next;
    if (newHead != NULL) {
        newHead->prev = NULL;
    }
    free(head);
    printf("Head node deleted successfully.\n");
    return newHead;
}
// 删除双向链表的尾结点
Node* deleteTail(Node* head) {
    if (head == NULL) {
        printf("Error: Empty list\n");
        return NULL;
    }
    if (head->next == NULL) {
        free(head);
        printf("Tail node (and the only node) deleted successfully.\n");
        return NULL;
    }
    Node* current = head;
    while (current->next->next != NULL) {
        current = current->next;
    }
    free(current->next);
    current->next = NULL;
    printf("Tail node deleted successfully.\n");
    return head;
}
// 删除双向链表的中间结点
Node* deleteMiddle(Node* head, int target) {
    if (head == NULL) {
        printf("Error: Empty list\n");
        return NULL;
    }
    Node* current = head;
    while (current != NULL && current->data != target) {
        current = current->next;
    }
    if (current == NULL) {
        printf("Error: Node with data %d not found in the list\n", target);
        return head;
    }
    if (current->prev != NULL) {
        current->prev->next = current->next;
    }
    if (current->next != NULL) {
        current->next->prev = current->prev;
    }
    free(current);
    printf("Node with data %d deleted successfully.\n", target);
    return head;
}
// 打印双向链表的内容
void printList(Node* head) {
    Node* current = head;
    while (current != NULL) {
        printf("%d ", current->data);
        current = current->next;
    }
    printf("\n");
}
int main() {
    // 创建一个简单的双向链表:1 <-> 2 <-> 3 <-> 4
    Node* head = (Node*)malloc(sizeof(Node));
    head->data = 1;
    head->prev = NULL;
    head->next = (Node*)malloc(sizeof(Node));
    head->next->data = 2;
    head->next->prev = head;
    head->next->next = (Node*)malloc(sizeof(Node));
    head->next->next->data = 3;
    head->next->next->prev = head->next;
    head->next->next->next = (Node*)malloc(sizeof(Node));
    head->next->next->next->data = 4;
    head->next->next->next->prev = head->next->next;
    head->next->next->next->next = NULL;
    printf("Original list: ");
    printList(head);
    // 删除头结点
    head = deleteHead(head);
    printf("List after deleting head: ");
    printList(head);
    // 删除尾结点
    head = deleteTail(head);
    printf("List after deleting tail: ");
    printList(head);
    // 删除中间结点(例如,删除值为3的结点)
    head = deleteMiddle(head, 3);
    printf("List after deleting middle node: ");
    printList(head);
    return 0;
}

目录
相关文章
|
7月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
209 1
|
12月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1134 6
|
12月前
|
存储 算法 Perl
数据结构实验之链表
本实验旨在掌握线性表中元素的前驱、后续概念及链表的建立、插入、删除等算法,并分析时间复杂度,理解链表特点。实验内容包括循环链表应用(约瑟夫回环问题)、删除单链表中重复节点及双向循环链表的设计与实现。通过编程实践,加深对链表数据结构的理解和应用能力。
211 4
|
9月前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
287 30
|
9月前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
408 25
|
10月前
|
机器学习/深度学习 存储 C++
【C++数据结构——线性表】单链表的基本运算(头歌实践教学平台习题)【合集】
本内容介绍了单链表的基本运算任务,涵盖线性表的基本概念、初始化、销毁、判定是否为空表、求长度、输出、求元素值、按元素值查找、插入和删除数据元素等操作。通过C++代码示例详细解释了顺序表和链表的实现方法,并提供了测试说明、通 - **任务描述**:实现单链表的基本运算。 - **相关知识**:包括线性表的概念、初始化、销毁、判断空表、求长度、输出、求元素值、查找、插入和删除等操作。 - **测试说明**:平台会对你编写的代码进行测试,提供测试输入和预期输出。 - **通关代码**:给出了完整的C++代码实现。 - **测试结果**:展示了测试通过后的预期输出结果。 开始你的任务吧,祝你成功!
434 5
|
11月前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
12月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
345 5
|
12月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
374 1
|
存储 C语言
【数据结构】手把手教你单链表(c语言)(附源码)
本文介绍了单链表的基本概念、结构定义及其实现方法。单链表是一种内存地址不连续但逻辑顺序连续的数据结构,每个节点包含数据域和指针域。文章详细讲解了单链表的常见操作,如头插、尾插、头删、尾删、查找、指定位置插入和删除等,并提供了完整的C语言代码示例。通过学习单链表,可以更好地理解数据结构的底层逻辑,提高编程能力。
1073 4

热门文章

最新文章