一文带你了解Java中synchronized原理

简介: 一文带你了解Java中synchronized原理



 

一、synchronized 基本特点

结合上篇文章给大家分享的锁策略, 我们就可以总结出, Synchronized 具有以下特性(只考虑JDK 1.8)。

  • 开始时是乐观锁, 如果锁冲突频繁, 就转换为悲观锁
  • 开始是轻量级锁实现, 如果锁被持有的时间较长, 就转换成重量级锁
  • 实现轻量级锁的时候大概率用到的自旋锁策略
  • 是一种不公平锁
  • 是一种可重入锁
  • 不是读写锁

二、加锁工作过程

JVM synchronized 锁分为 无锁、偏向锁、轻量级锁、重量级锁 状态。会根据情况,进行依次升级。

2.1 偏向锁

第一个尝试加锁的线程, 优先进入偏向锁状态。

  • 偏向锁不是真的 "加锁", 只是给对象头中做一个 "偏向锁的标记", 记录这个锁属于哪个线程
  • 如果后续没有其他线程来竞争该锁, 那么就不用进行其他同步操作了(避免了加锁解锁的开销)
  • 如果后续有其他线程来竞争该锁(刚才已经在锁对象中记录了当前锁属于哪个线程了, 很容易识别当前申请锁的线程是不是之前记录的线程), 那就取消原来的偏向锁状态, 进入一般的轻量级锁状态。
  • 偏向锁本质上相当于 "延迟加锁", 能不加锁就不加锁, 尽量来避免不必要的加锁开销。
    但是该做的标记还是得做的, 否则无法区分何时需要真正加锁。

举个例子理解偏向锁:

假设男主是一个锁, 女主是一个线程。如果只有这一个线程来使用这个锁, 那么男主女主即使不领证结婚(避免了高成本操作), 也可以一直幸福的生活下去。

但是女配出现了, 也尝试竞争男主, 此时不管领证结婚这个操作成本多高, 女主也势必要把这个动作完成了, 让女配死心。

2.2 轻量级锁

随着其他线程进入竞争, 偏向锁状态被消除, 进入轻量级锁状态(自适应的自旋锁)。此处的轻量级锁就是通过 CAS(后面我会给大家详细介绍) 来实现。

  • 通过 CAS 检查并更新一块内存 (比如 null => 该线程引用)
  • 如果更新成功, 则认为加锁成功
  • 如果更新失败, 则认为锁被占用, 继续自旋式的等待(并不放弃 CPU)

自旋操作是一直让 CPU 空转, 比较浪费 CPU 资源。因此此处的自旋不会一直持续进行, 而是达到一定的时间/重试次数, 就不再自旋了。也就是所谓的 "自适应"。

2.3 重量级锁

如果竞争进一步激烈, 自旋不能快速获取到锁状态, 就会膨胀为重量级锁,此处的重量级锁就是指用到内核提供的 mutex 。

  • 执行加锁操作, 先进入内核态
  • 在内核态判定当前锁是否已经被占用
  • 如果该锁没有占用, 则加锁成功, 并切换回用户态
  • 如果该锁被占用, 则加锁失败, 此时线程进入锁的等待队列, 挂起等待被操作系统唤醒
  • 经历了一系列的沧海桑田, 这个锁被其他线程释放了, 操作系统也想起了这个挂起的线程, 于是唤醒这个线程, 尝试重新获取锁

三、其他的优化操作

3.1 锁消除

编译器+JVM 判断锁是否可消除,如果可以, 就直接消除。什么是 "锁消除"

有些应用程序的代码中, 用到了 synchronized, 但其实没有在多线程环境下,(例如 StringBuffer)

StringBuffer sb = new StringBuffer();
sb.append("a");
sb.append("b");
sb.append("c");
sb.append("d");

此时每个 append 的调用都会涉及加锁和解锁,但如果只是在单线程中执行这个代码, 那么这些加

锁解锁操作是没有必要的, 白白浪费了一些资源开销。

3.2 锁粗化

一段逻辑中如果出现多次加锁解锁, 编译器+ JVM 会自动进行锁的粗化。

锁的粒度: 粗和细

实际开发过程中, 使用细粒度锁, 是期望释放锁的时候其他线程能使用锁。但是实际上可能并没有其他线程来抢占这个锁,这种情况 JVM 就会自动把锁粗化, 避免频繁申请释放锁。

举个例子理解锁粗化:

滑稽老哥当了领导, 给下属交代工作任务:

方式一:

  • 打电话, 交代任务1, 挂电话
  • 打电话, 交代任务2, 挂电话
  • 打电话, 交代任务3, 挂电话

方式二:

  • 打电话, 交代任务1, 任务2, 任务3, 挂电话

显然, 方式二是更高效的方案。

 


🌈🌈🌈好啦,今天的分享就到这里!

🛩️🛩️🛩️希望各位看官读完文章后,能够有所提升。

🎉🎉🎉创作不易,还希望各位大佬支持一下!

✈️✈️✈️点赞,你的认可是我创作的动力!

⭐⭐⭐收藏,你的青睐是我努力的方向!

✏️✏️✏️评论:你的意见是我进步的财富!

 

目录
相关文章
|
3月前
|
监控 Java API
现代 Java IO 高性能实践从原理到落地的高效实现路径与实战指南
本文深入解析现代Java高性能IO实践,涵盖异步非阻塞IO、操作系统优化、大文件处理、响应式网络编程与数据库访问,结合Netty、Reactor等技术落地高并发应用,助力构建高效可扩展的IO系统。
98 0
|
3月前
|
存储 缓存 安全
深入讲解 Java 并发编程核心原理与应用案例
本教程全面讲解Java并发编程,涵盖并发基础、线程安全、同步机制、并发工具类、线程池及实际应用案例,助你掌握多线程开发核心技术,提升程序性能与响应能力。
128 0
|
3月前
|
安全 算法 Java
Java 中 synchronized 与 AtomicInteger 的区别
在Java多线程编程中,`synchronized`和`AtomicInteger`均用于实现线程安全,但原理与适用场景不同。`synchronized`是基于对象锁的同步机制,适用于复杂逻辑和多变量同步,如银行转账;而`AtomicInteger`采用CAS算法,适合单一变量的原子操作,例如计数器更新。二者各有优劣,应根据具体需求选择使用。
96 0
|
3月前
|
人工智能 安全 Java
Go与Java泛型原理简介
本文介绍了Go与Java泛型的实现原理。Go通过单态化为不同类型生成函数副本,提升运行效率;而Java则采用类型擦除,将泛型转为Object类型处理,保持兼容性但牺牲部分类型安全。两种机制各有优劣,适用于不同场景。
102 24
|
4月前
|
存储 缓存 Java
我们来详细讲一讲 Java NIO 底层原理
我是小假 期待与你的下一次相遇 ~
157 2
|
4月前
|
XML JSON Java
Java 反射:从原理到实战的全面解析与应用指南
本文深度解析Java反射机制,从原理到实战应用全覆盖。首先讲解反射的概念与核心原理,包括类加载过程和`Class`对象的作用;接着详细分析反射的核心API用法,如`Class`、`Constructor`、`Method`和`Field`的操作方法;最后通过动态代理和注解驱动配置解析等实战场景,帮助读者掌握反射技术的实际应用。内容翔实,适合希望深入理解Java反射机制的开发者。
335 13
|
4月前
|
算法 Java 索引
说一说 Java 并发队列原理剖析
我是小假 期待与你的下一次相遇 ~
|
4月前
|
安全 Java 编译器
JD-GUI,java反编译工具及原理: JavaDecompiler一个Java反编译器
Java Decompiler (JD-GUI) 是一款由 Pavel Kouznetsov 开发的图形化 Java 反编译工具,支持 Windows、Linux 和 Mac Os。它能将 `.class` 文件反编译为 Java 源代码,支持多文件标签浏览、高亮显示,并兼容 Java 5 及以上版本。JD-GUI 支持对整个 Jar 文件进行反编译,可跳转源码,适用于多种 JDK 和编译器。其原理基于将字节码转换为抽象语法树 (AST),再通过反编译生成代码。尽管程序可能带来安全风险,但可通过代码混淆降低可读性。最新版修复了多项识别错误并优化了内存管理。
1979 1
|
4月前
|
存储 算法 安全
Java中的对称加密算法的原理与实现
本文详细解析了Java中三种常用对称加密算法(AES、DES、3DES)的实现原理及应用。对称加密使用相同密钥进行加解密,适合数据安全传输与存储。AES作为现代标准,支持128/192/256位密钥,安全性高;DES采用56位密钥,现已不够安全;3DES通过三重加密增强安全性,但性能较低。文章提供了各算法的具体Java代码示例,便于快速上手实现加密解密操作,帮助用户根据需求选择合适的加密方案保护数据安全。
351 58

热门文章

最新文章