用 Python 分析招聘岗位,结果 Python 薪资竟然垫底。。。

简介: 用 Python 分析招聘岗位,结果 Python 薪资竟然垫底。。。

全国数据汇总

首先我们先来看下9个城市招聘数据的汇总情况

数据汇总

首先读取所有的文件数据,再通过 concat 函数合并

beijing = pd.read_csv("beijing_data.csv")
shanghai = pd.read_csv("shanghai_data.csv")
shenzhen = pd.read_csv("shenzhen_data.csv")
guangzhou = pd.read_csv("guangzhou_data.csv")
hangzhou = pd.read_csv("hangzhou_data.csv")
nanjing = pd.read_csv("nanjing_data.csv")
wuhan = pd.read_csv("wuhan_data.csv")
xian = pd.read_csv("xian_data.csv")
chengdu = pd.read_csv("chengdu_data.csv")
all_data = pd.concat([beijing, shanghai, shenzhen, guangzhou, hangzhou, nanjing, wuhan, xian, chengdu], ignore_index=True)

计算平均薪资

由于抓取到的薪资都是一个范围值,所以需要简单处理下,求出每个岗位的平均薪资

import re
rege = r'(\d+)-(\d+)K'
def get_num(mystr):
    res = re.match(rege, mystr)
    result = (int(res.group(1)) + int(res.group(2)))/2
    return int(result)
all_data['avg_salary'] = all_data['salary'].apply(get_num)

招聘平均薪资排行

先来看看全国企业中,招聘薪资前十的都是哪些公司

从上面的统计可以看出,大多数企业都是仅仅有一个岗位在招聘当中,而且给出的薪资都是相当诱人的。

而排行第一的慧择信息集团,好像还是一个新生企业,从平均薪资来看,3个在招的岗位薪资应该都是很高的,看来应该是一家极具潜力的公司。

招聘岗位数量排行

下面再来看下全国范围内企业的招聘数量

对于榜单的前两名,不多说了,知道的都懂!

榜单的其余部分,可都是货真价实的大厂,其中 VIVO 最为抢眼啊,58个在招岗位,平均薪资可以给到38K+,看着都眼红!

同时阿里集团和蚂蚁金服,作为中国互联网的圣地,无论是在招岗位还是薪资待遇,都是国内顶级了。

而腾讯,BOSS 直聘的薪资待遇也是非常好的。至于京东和华为,好像多少有些落后了,不过京东咱不清楚,华为的年终奖可是业界有名,传说中高级别员工都看不上那点工资呀。

下面我们再把榜单扩展到前20名,为了效果,我把前两名去掉了,不是我太残忍,而是我不能忍!


看下榜单,基本囊括了中国所有出名的大厂,而且不但在招岗位多,给到的薪资也很有竞争力,有钱任性啊。

高薪岗位分布

下面我们再看下,高薪岗位前30名中,岗位类型的分布情况

可以看到,近期大火的数据分析岗位占据了将近一半的比例,看来这个岗位的火爆还是有其薪资的强大支撑的。

接下来 Java 和产品经理的岗位数量不相上下,而最为可怜的就是 Python 岗了,虽然号称全球最火,可是真正的高薪岗位却少之又少,难道是因为其上手容易,所以比较好招人嘛?

那么我们再来比较下这四种岗位的总体岗位数量和平均薪资情况,虽然平均薪资看起来是一刀切,但是还是可以在一定程度上反映出不同岗位之间的薪资差距的

可以看出,平均薪资最高的仍然是 Java,而且在招的岗位也是最多的,所以说成为一名合格的 Java 工程师还是最好的从业选择?

而数据分析岗位的总体平均薪资竟然成为了最低的,不过仍然有接近15K的水平,这是不是说明高级的数据分析专家和低阶的数据分析员们正在两极分化的路上越走越远呢!

好了,对于全国的岗位分析暂时就这么多,下面再一起来看看不同城市的数据情况,正如上一篇文章中说的那样,当今的中国互联网已经不再是“北上广深”了,而应该改为“北上深杭”,那么我也就抽取了这四个城市的数据,来简单分析下。

四巨头平均薪资

同样的,我们先来看下四座城市平均招聘薪资最高的排行榜情况

平均薪资排行

北京

上海

深圳

杭州

从上面的统计榜单可以看出,大部分上榜的公司都是因为很少的在招岗位、很高的薪资区间才得以上榜的,所以我们很难看到一些诸如阿里,腾讯等超级巨头,因为他们的招聘岗位很多,薪资通过平均的计算后,自然就落选榜单了。

但是,深圳的 VIVO 公司绝对是王者般的存在,37个在招岗位,平均薪资还能达到40K+,我只想问问,哪位在 VIVO 工作,求介绍,求勾搭!

四巨头高薪排行

接下来我们再看看这四座城市高薪岗位的前十名情况

北京

上海

深圳

杭州

可以看出,在高薪岗位中,基本是高级 Java 和高级数据分析的天下,对于产品经理和 Python 工程师来说,可能有点凄凉了。

而对于上榜的企业来说,上榜最多的无疑还是 VIVO 了,尤其是在其大本营深圳,VIVO 的高薪岗位基本占据了半壁江山。当然令人意外的是,腾讯竟然没有一个岗位挤进前十,what's the problem?

而上榜第二多的企业就是阿里集团了,无论是北京、上海还是杭州,都有阿里的高薪岗位,不得不说,大城市的程序猿就是幸福指数高哦!

四巨头高薪分布

最好,我们再来看看高薪岗位的分布情况

北京

上海

深圳

杭州

一句话总结就是,北京的 Java,深圳的产品经理,杭州的数据分析,无处安放的 Python!

相关文章
|
28天前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
85 35
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
155 70
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
66 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
29天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
260 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
3月前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
19天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
101 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
1月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
82 37
Python时间序列分析工具Aeon使用指南
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
76 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
179 68
|
1月前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。

热门文章

最新文章