云原生|kubernetes|pod或容器的安全上下文配置解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 云原生|kubernetes|pod或容器的安全上下文配置解析

前言:

安全上下文(Security Context)定义 Pod 或 Container 的特权与访问控制设置。 安全上下文包括但不限于:

  • 自主访问控制(Discretionary Access Control): 基于用户 ID(UID)和组 ID(GID) 来判定对对象(例如文件)的访问权限。
  • 安全性增强的 Linux(SELinux): 为对象赋予安全性标签。
  • 以特权模式或者非特权模式运行。
  • Linux 权能: 为进程赋予 root 用户的部分特权而非全部特权。
  • AppArmor:使用程序配置来限制个别程序的权能。
  • Seccomp:过滤进程的系统调用。
  • allowPrivilegeEscalation:控制进程是否可以获得超出其父进程的特权。 此布尔值直接控制是否为容器进程设置 no_new_privs标志。 当容器满足一下条件之一时,allowPrivilegeEscalation 总是为 true(一般是false的)
  • 以特权模式运行,或者
  • 具有 CAP_SYS_ADMIN 权能
  • readOnlyRootFilesystem:以只读方式加载容器的根文件系统(一般是true的,true时,exec进容器不能更改文件系统,例如,在容器内touch文件,删除文件,新建文件夹等等操作都会被禁止

一,

安全上下文的示例

没有配置安全上下文的pod:

[root@k8s-master ~]# cat nosecurity_pod.yaml 
apiVersion: v1
kind: Pod
metadata:
  creationTimestamp: null
  labels:
  name: busybox-nosecurity
spec:
  volumes:
  - name: sec-ctx-vol
    emptyDir: {}
  containers:
  - image: busybox
    name: busybox-nosecurity
    command: [ "sh","-c","sleep 1h" ]
    volumeMounts:
    - name: sec-ctx-vol
      mountPath: /data/demo
  dnsPolicy: ClusterFirst
  restartPolicy: Always
status: {}

配置了安全上下文的pod:

 cat security_pod.yaml 
apiVersion: v1
kind: Pod
metadata:
  creationTimestamp: null
  labels:
  name: busybox-security
spec:
  securityContext:
    runAsUser: 1000
    runAsGroup: 3000
    fsGroup: 2000
  volumes:
  - name: sec-ctx-vol
    emptyDir: {}
  containers:
  - image: busybox
    name: busybox-security
    command: [ "sh","-c","sleep 1h" ]
    volumeMounts:
    - name: sec-ctx-vol
      mountPath: /data/demo2
    resources: {}
    securityContext:
      allowPrivilegeEscalation: false
      readOnlyRootFilesystem: true
  dnsPolicy: ClusterFirst
  restartPolicy: Always
status: {}

若要为 Container 设置安全性配置,可以在 Container 清单中包含 securityContext 字段。securityContext 字段的取值是一个 SecurityContext 对象。你为 Container 设置的安全性配置仅适用于该容器本身,并且所指定的设置在与 Pod 层面设置的内容发生重叠时,会重写 Pod 层面的设置。Container 层面的设置不会影响到 Pod 的卷。说人话就是pod和容器两个层面都可以设置securitycontext,如果是多容器,比如,某个pod内有A和B两个容器,pod和容器B分别设置了securitycontext,那么,A容器使用pod的securitycontext,B容器使用它自己设置的securitycontext(这一段比较绕口,是需要仔细阅读理解的哦)

上面这个示例就仅仅设置了pod的securitycontext,但容器是继承了pod的securitycontext

进入没有配置安全上下文的pod:

可以看到是使用的root权限,可以任意做手脚

[root@k8s-master ~]# kubectl exec -it busybox-nosecurity -- /bin/sh
/ # id
uid=0(root) gid=0(root) groups=10(wheel)
/ # 
/ # ps
PID   USER     TIME  COMMAND
    1 root      0:00 sleep 1h
   28 root      0:00 /bin/sh
   35 root      0:00 ps
/ # rm -rf 
.dockerenv  bin/        data/       dev/        etc/        proc/       root/       sys/        tmp/        usr/        var/
/ # rm -rf .dockerenv 
/ # 

进入配置了安全上下文的容器

可以看到无法使用root权限,安全性大大的提高了

[root@k8s-master ~]# kubectl exec -it busybox-security -- /bin/sh
/ $ id
uid=1000 gid=3000 groups=2000
/ $ ps
PID   USER     TIME  COMMAND
    1 1000      0:00 sleep 1h
   25 1000      0:00 /bin/sh
   33 1000      0:00 ps
/ $ rm -rf home/
rm: can't remove 'home': Read-only file system
/ $ ls -al /data/demo2/
total 0
drwxrwsrwx    2 root     2000             6 Jan  8 20:00 .
drwxr-xr-x    3 root     root            19 Jan  8 20:00 ..
/ $ touch aaa
touch: aaa: Read-only file system

二,

精细化的安全上下文权限分配     capabilities

默认情况下 Docker 会删除必须的 capabilities 之外的所有 capabilities,因为在容器中我们经常会以 root 用户来运行,使用 capabilities 后,容器中的使用的 root 用户权限就比我们平时在宿主机上使用的 root 用户权限要少很多了,这样即使出现了安全漏洞,也很难破坏或者获取宿主机的 root 权限,所以 Docker 支持 Capabilities 对于容器的安全性来说是非常有必要的,当然,kubernetes的底层是docker,所以kubernetes也是支持capabilities的

在说到这个capabilities之前,需要说一下特权容器,一般的容器是无法获取宿主机的内核参数的,但某些情况下,有和宿主机的内核交互的需求,容器中有些应用程序可能需要访问宿主机设备、修改内核等需求,在默认情况下, 容器没这个有这个能力,这个时候,就需要特权容器了,但这个特权容器是非常不安全的:

containers:
- image: lizhenliang/flask-demo:root
  name: web
  securityContext:
    privileged: true

启用特权模式就意味着为容器提供了访问Linux内核的所有能力,这是很危险的,为了减少系统调用的供给,可以使用Capabilities为容器赋予仅所需的能力。

这个capabilities不是特别常见,coredns的部署里可以看到:

        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            add:
            - NET_BIND_SERVICE
            drop:
            - all
          readOnlyRootFilesystem: true

具体的capabilities有哪些呢?capabilities(7) - Linux manual page  这个网站有比较详细的介绍,下图是一个简略的介绍:

例如下面这个示例,容器虽然是root用户,但只给了一个无关紧要的kill 进程权限,因此,这个pod是无法ping其它的pod的

cat security_pod.yaml 
apiVersion: v1
kind: Pod
metadata:
  creationTimestamp: null
  labels:
  name: busybox-security
spec:
  volumes:
  - name: sec-ctx-vol
    emptyDir: {}
  containers:
  - image: busybox
    name: busybox-security
    command: [ "sh","-c","sleep 1h" ]
    volumeMounts:
    - name: sec-ctx-vol
      mountPath: /data/demo2
    resources: {}
    securityContext:
      capabilities:
        drop:
          - ALL
        add: ["KILL"]
      allowPrivilegeEscalation: false
      readOnlyRootFilesystem: true
  dnsPolicy: ClusterFirst
  restartPolicy: Always
status: {}

进入容器后,虽然是root用户,但是是无法执行需要高网络权限的命令的(ping命令需要网络权限)

[root@k8s-master ~]# kubectl exec -it busybox-security -- /bin/sh
/ # id
uid=0(root) gid=0(root) groups=10(wheel)
/ # ping 10.244.0.13
PING 10.244.0.13 (10.244.0.13): 56 data bytes
ping: permission denied (are you root?)

上述文件修改成如下:

apiVersion: v1
kind: Pod
metadata:
  creationTimestamp: null
  labels:
  name: busybox-security
spec:
  volumes:
  - name: sec-ctx-vol
    emptyDir: {}
  containers:
  - image: busybox
    name: busybox-security
    command: [ "sh","-c","sleep 1h" ]
    volumeMounts:
    - name: sec-ctx-vol
      mountPath: /data/demo2
    resources: {}
    securityContext:
      capabilities:
        drop:
          - ALL
        add: ["NET_ADMIN","NET_RAW"]
      allowPrivilegeEscalation: false
      readOnlyRootFilesystem: true
  dnsPolicy: ClusterFirst
  restartPolicy: Always
status: {}

执行此文件后,就可以愉快的在容器内使用ping命令了:

[root@k8s-master ~]# kubectl exec -it busybox-security -- /bin/sh
/ # id
uid=0(root) gid=0(root) groups=10(wheel)
/ # ping 10.244.0.13
PING 10.244.0.13 (10.244.0.13): 56 data bytes
64 bytes from 10.244.0.13: seq=0 ttl=62 time=1.142 ms
64 bytes from 10.244.0.13: seq=1 ttl=62 time=0.889 ms
^C
--- 10.244.0.13 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.889/1.015/1.142 ms

小结:

securitycontext是对于pod和容器的安全性提升有非常大帮助的一个选项,因此,如果没有测试的需求,最好还是启用securitycontext,并且禁用privileged特权容器,以免对宿主机造成破坏。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
7天前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
28 2
|
8天前
|
存储 Cloud Native 块存储
EBS深度解析:云原生时代企业级块存储
企业上云的策略,从 Cloud-Hosting 转向 Serverless 架构。块存储作为企业应用上云的核心存储产品,将通过 Serverless 化来加速新的计算范式全面落地。在本话题中,我们将会介绍阿里云块存储企业级能力的创新,深入解析背后的技术细节,分享对未来趋势的判断。
|
7天前
|
Kubernetes 监控 负载均衡
深入云原生:Kubernetes 集群部署与管理实践
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其弹性、可扩展性成为企业IT架构的首选。本文将引导你了解如何部署和管理一个Kubernetes集群,包括环境准备、安装步骤和日常维护技巧。我们将通过实际代码示例,探索云原生世界的秘密,并分享如何高效运用这一技术以适应快速变化的业务需求。
27 1
|
10天前
|
Kubernetes Cloud Native 云计算
云原生技术深度解析:重塑企业IT架构的未来####
本文深入探讨了云原生技术的核心理念、关键技术组件及其对企业IT架构转型的深远影响。通过剖析Kubernetes、微服务、容器化等核心技术,本文揭示了云原生如何提升应用的灵活性、可扩展性和可维护性,助力企业在数字化转型中保持领先地位。 ####
|
11天前
|
运维 Kubernetes Cloud Native
Kubernetes云原生架构深度解析与实践指南####
本文深入探讨了Kubernetes作为领先的云原生应用编排平台,其设计理念、核心组件及高级特性。通过剖析Kubernetes的工作原理,结合具体案例分析,为读者呈现如何在实际项目中高效部署、管理和扩展容器化应用的策略与技巧。文章还涵盖了服务发现、负载均衡、配置管理、自动化伸缩等关键议题,旨在帮助开发者和运维人员掌握利用Kubernetes构建健壮、可伸缩的云原生生态系统的能力。 ####
|
5天前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
7天前
|
运维 Kubernetes Cloud Native
云原生技术:容器化与微服务架构的完美结合
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其灵活性和高效性成为企业的新宠。本文将深入探讨云原生的核心概念,包括容器化技术和微服务架构,以及它们如何共同推动现代应用的发展。我们将通过实际代码示例,展示如何在Kubernetes集群上部署一个简单的微服务,揭示云原生技术的强大能力和未来潜力。
|
16天前
|
弹性计算 Kubernetes Cloud Native
云原生架构下的微服务设计原则与实践####
本文深入探讨了在云原生环境中,微服务架构的设计原则、关键技术及实践案例。通过剖析传统单体架构面临的挑战,引出微服务作为解决方案的优势,并详细阐述了微服务设计的几大核心原则:单一职责、独立部署、弹性伸缩和服务自治。文章还介绍了容器化技术、Kubernetes等云原生工具如何助力微服务的高效实施,并通过一个实际项目案例,展示了从服务拆分到持续集成/持续部署(CI/CD)流程的完整实现路径,为读者提供了宝贵的实践经验和启发。 ####
|
8天前
|
消息中间件 存储 Cloud Native
云原生架构下的数据一致性挑战与应对策略####
本文探讨了在云原生环境中,面对微服务架构的广泛应用,数据一致性问题成为系统设计的核心挑战之一。通过分析云原生环境的特点,阐述了数据不一致性的常见场景及其对业务的影响,并深入讨论了解决这些问题的策略,包括采用分布式事务、事件驱动架构、补偿机制以及利用云平台提供的托管服务等。文章旨在为开发者提供一套系统性的解决方案框架,以应对在动态、分布式的云原生应用中保持数据一致性的复杂性。 ####
|
4天前
|
Cloud Native 安全 API
云原生架构下的微服务治理策略与实践####
—透过云原生的棱镜,探索微服务架构下的挑战与应对之道 本文旨在探讨云原生环境下,微服务架构所面临的关键挑战及有效的治理策略。随着云计算技术的深入发展,越来越多的企业选择采用云原生架构来构建和部署其应用程序,以期获得更高的灵活性、可扩展性和效率。然而,微服务架构的复杂性也带来了服务发现、负载均衡、故障恢复等一系列治理难题。本文将深入分析这些问题,并提出一套基于云原生技术栈的微服务治理框架,包括服务网格的应用、API网关的集成、以及动态配置管理等关键方面,旨在为企业实现高效、稳定的微服务架构提供参考路径。 ####
24 5

推荐镜像

更多