OpenCV高斯滤波器、双边滤波器的讲解与实战(附Python源码)

简介: OpenCV高斯滤波器、双边滤波器的讲解与实战(附Python源码)

需要源码和图片请点赞关注收藏后评论区留言私信~~~

一、高斯滤波器

高斯滤波也被称为高斯模糊或者高斯平滑,是目前应用最广泛的平滑处理算法,高斯滤波可以很好的在降低图片噪声,细节层次的同时保留更多的图像信息,经过处理的图像呈现磨砂玻璃的滤镜效果

在高斯滤波中,越靠近核心的像素权重越大,越远离核心的像素权重越小,高斯滤波的计算过程涉及卷积运算,会有一个与滤波核带线啊哦相等的卷积核,卷积核中保存的值就是核所覆盖区域的权重值

像素与卷积核进行卷积计算

opencv将高斯滤波器封装成了GaussianBlur方法 语法格式如下

dst=cv2.GaussianBlur(src,ksize,sigmaX,sigmaY,borderType)

sigmaX 卷积核水平方向的标准差

sigmaY 卷积核垂直方向的标准差

修改sigmaX或者sigmaY的值都可以改变卷积核中的权重比例,也可以设置为0,该方法会根据滤波核的大小自动计算合适的权重比例

下面对花朵图像进行高斯滤波处理

滤波核越大,处理之后的图像就越模糊,和均值滤波,中值滤波处理的图像相比,高斯滤波处理的图像更加平滑,保留的图像更多,更容易辨认

部分代码如下

import cv2
img = cv2.imread("amygdalus triloba.jpg")  # 读取原图
dst1 = cv2.GasianBlur(img, (5, 5), 0, 0)  # 使用大小为5*5的滤波核进行高斯滤波
dst2 = cv2.GaianBlur(img, (9, 9), 0, 0)  # 使用大小为9*9的滤波核进行高斯滤波
dst3 = cv2.GaussianBlur(img, (15, 15), 0, 0)  # 使用大小为15*15的滤波核进行高斯滤波
cv2.imshow("im", img)  # 显示原图
cv2.imshw("5", dst1)  # 显示滤波效果
cv2.imshow("9", dst2)
cv2.imshw("15", dst3)
cv2.waitKey()  # 按下任何键盘按键后
cv2.deroyAllWindows()  # 释放所有窗体

二、双边滤波器

上面几种滤波方法都会使整幅图像变得平滑,图像中的边界会变得模糊不清,双边滤波使一种在平滑处理过程中可以有效保护边界信息的滤波操作方法。

双边滤波器自动判断滤波核处于平坦区域还是边缘区域,如果滤波核处于平坦区域,则会使用类似高斯滤波的算法进行滤波,如果滤波核处于边缘区域,则加大边缘像素的权重,尽可能地让这些像素值保持不变

opencv将双边滤波器封装成bilateralFilter方法 语法格式如下

dst=cv2.bilateralFilter(src,d,sigmaColor,sigmaSpace,borderType)

d 以当前像素为中心的整个滤波区域的直径

sigmaColor 参与计算的颜色范围,这个值使像素颜色值与周围颜色值的最大差值,只有颜色值之差小于这个值时,周围的像素才进行滤波计算,值为255时,表示所有颜色都参与计算

sigmaspace 该值越大 参与计算的像素数量就越多

下面对比高斯滤波和双边滤波的处理效果

可见双边滤波明显清晰一些,并且边界信息保存的更好

部分代码如下

import cv2
img = cv2.imread("amygdalus triloba.jpg")  # 读取原图
dst1 = cv2.GauianBlur(img(15, 15), 0, 0)  # 使用大小为15*15的滤波核进行高斯滤波
# 双边滤波取范围直径为15,颜色差为120
dst2 = cv2.bilateralFilter(img, 15, 120, 100)
cv2.imshow("img", img)  #示原图
cv2.imshow(auss", dst1)  # 显示高斯滤波效果
cv2.show("bilateral", dst2)  # 显示双边滤波效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAWindows()  # 释放所有窗体

总结

噪声指的是一幅图像内部的、高亮度的像素点。图像平滑处理是指在尽量保留原图像信息的情况下,去除图像内部的这些高亮度的像素点(即“噪声”)。为了实现图像平滑处理,需要的工具就是滤波器。虽然每种滤波器的实现原理都不同,但是每种滤波器都能对图像进行图像平滑处理

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
6天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
7天前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
13 1
|
3天前
|
数据采集 存储 数据处理
探索Python中的异步编程:从基础到实战
【10月更文挑战第39天】在编程世界中,时间就是效率的代名词。Python的异步编程特性,如同给程序穿上了一双翅膀,让它们在执行任务时飞得更高、更快。本文将带你领略Python异步编程的魅力,从理解其背后的原理到掌握实际应用的技巧,我们不仅会讨论理论基础,还会通过实际代码示例,展示如何利用这些知识来提升你的程序性能。准备好让你的Python代码“起飞”了吗?让我们开始这场异步编程的旅程!
10 0
|
7天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
3天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
3天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
3天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
5天前
|
设计模式 算法 搜索推荐
Python编程中的设计模式:优雅解决复杂问题的钥匙####
本文将探讨Python编程中几种核心设计模式的应用实例与优势,不涉及具体代码示例,而是聚焦于每种模式背后的设计理念、适用场景及其如何促进代码的可维护性和扩展性。通过理解这些设计模式,开发者可以更加高效地构建软件系统,实现代码复用,提升项目质量。 ####
|
4天前
|
机器学习/深度学习 存储 算法
探索Python编程:从基础到高级应用
【10月更文挑战第38天】本文旨在引导读者从Python的基础知识出发,逐渐深入到高级编程概念。通过简明的语言和实际代码示例,我们将一起探索这门语言的魅力和潜力,理解它如何帮助解决现实问题,并启发我们思考编程在现代社会中的作用和意义。
|
5天前
|
机器学习/深度学习 数据挖掘 开发者
Python编程入门:理解基础语法与编写第一个程序
【10月更文挑战第37天】本文旨在为初学者提供Python编程的初步了解,通过简明的语言和直观的例子,引导读者掌握Python的基础语法,并完成一个简单的程序。我们将从变量、数据类型到控制结构,逐步展开讲解,确保即使是编程新手也能轻松跟上。文章末尾附有完整代码示例,供读者参考和实践。