二叉树查找值为x的结点、树的高度、第k层结点个数的代码实现

简介: 二叉树查找值为x的结点、树的高度、第k层结点个数的代码实现


<你想看的我这里都有😎 >

树的高度

//树的高度
int TreeHeight(TreeNode* root)
{
  if (root == NULL)
    return 0;
  int leftHeight = TreeHeight(root->left);
  int rightHeight = TreeHeight(root->right);
  return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}

设计思想:

  1. 如果即当前子树为空,则返回 0,表示该子树没有任何结点,因此高度为 0
  2. 如果传入的 root 指针不为空,则执行以下操作:
    a)调用递归函数 TreeHeight(root->left) 来计算左子树中结点到达最底层所需经过的边数,并将结果赋值给变量 leftHeight
    b)调用递归函数 TreeHeight(root->right) 来计算右子树中结点到达最底层所需经过边数,并将结果赋值给变量 rightHeight
    c)返回左右子树两者中较大者加上当前节点本身所代表边数(加1)作为该子问题下一级别解答(理解这里十分重要)

解释: 1、某个结点的左子树递归的三目运算符的运算结果都会在最后赋值给leftHeight,右子树递归的三目运算符的运算结果都会在最后赋值给rightHeight

2、每次调用 TreeHeight 函数时都会进行三目运算符的比较,如果是叶子结点,由于没有左右子树为空所以两次递归返回的值均为0,即leftHeight和rightHeight的值均为0(因为0>0为假,故:rightHeight+1,此时rightHeight+1里的+1是为了加上3结点本身的高度,不可能因为左右子树均为空就没有高度了,当前结点也算一个高度)比较后会返回1它被赋值给leftHeight,因为它是2结点的左子树递归得到的,同时它也告诉了2结点你的左子树高度只有1,然后2结点又会递归调用它的右子树但是由于右子树为NULL所以会返回0,所以此时leftHeight和rightHeight的值分别为1和0(因为1>0为真所以leftHeight+1,表明2结点的左子树大于右子树,左子树的高度可以代表2结点的高度)比较后会返回2它被赋值给leftHeight,因为它是1结点的左子树递归得到的,同时它也告诉了1结点你的左子树高度为2

3、然后1结点会递归它的右子树,剩余步骤与上面描述的大致相似,最后右递归会告诉1结点你的右子树高度为2(因为2>2为假所rightHeight+1,此时rightHeight+1里的+1是为了加上1结点本身的高度,不可能左右子树高度相等就没有高度了,当前结点也算一个高度,所以当前结点的左右子树结点高度相等,将当前左右结点子树的高度+1就是整个树的高度)

第k层结点的个数

//第k层结点的个数,k==2
int TreeLevelK(TreeNode* root,int k)
{
  assert(k > 0);
  if (root == NULL)
    return 0;
  if (k == 1)
    return 1;
  return TreeLevelK(root->left, k - 1) +
    TreeLevelK(root->right,k-1);
}

设计思想:

  1. 树为空,返回0
  2. 树不为空且是第一层结点个数,返回1
  3. 树不为空且是第n(n>1)层结点的个数,返回(左子树的k-1层 + 右子树的k-1层)

k-1而不是k,k相当于判断条件count,当count==1的时候就相当于找到了我们要找的那一层,如果为k,那么递归的返回条件就不存在

解释:

1、查找第3层结点个数,即k == 3

2、树不为空,并且k != 1,所以递归结点1的左子树,结点2不为空,此时k-1 = 2 != 1,所以可以继续递归结点2的左子树,结点3不为空,此时k-1 = 1 == 1,所以返回1,即递归结点2左子树的返回值为1,然后递归结点2的右子树,右子树为空返回0,最后0+1=1,即递归结点1左子树的返回值为1,这说明结点1左子树第3层的结点个数为1

3、然后递归结点1的右子树,结点4不为空,此时k-1 = 2 != 1,所以可以继续递归结点4的左子树,结点5不为空,此时k - 1 =1 == 1,所以返回1,即递归结点4的左子树的返回值为1,然后递归结点4的右子树,结点6不为空,此时k - 1 =1 == 1(这是因为此时处于结点4的TreeLevelK函数中,此时的k为2),所以返回1,即递归结点4的右子树的返回值为1,最后1+1=2,即递归结点1右子树的返回值为2,这说明结点1右子树第3层的结点个数为2

4、最后结点1的左右子树均递归完毕,1+2=3即该二叉树第3层的结点个数为3

查找值为x的结点

返回值为指针

//查找值为x的结点
TreeNode* TreeFind(TreeNode* root, BTDataType x)
{
  if (root == NULL)
    return NULL;
  if (root->data == x)
    return root;
  TreeNode* ret1 = TreeFind(root->left, x);
  if (ret1)
    return ret1;
  TreeNode* ret2 = TreeFind(root->right, x);
  if (ret2)
    return ret2;
  return NULL;
}

解释:整体过程不再进行文字解释,建议自己画图加深对代码的理解

注意对返回值NULL的处理和理解

返回值为布尔类型

//查找值为x的结点,返回值为布尔类型
bool TreeFind(TreeNode* root, BTDataType x)
{
  if (root == NULL)
    return NULL;
  if (root->data == x)
    return root;
  return TreeFind(root->left, x) || TreeFind(root->right, x);
}

解释:整体过程不再进行文字解释,建议自己画图加深对代码的理解

整体代码

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <stdbool.h>
typedef int BTDataType;
typedef struct BinaryTreeNode
{
  BTDataType data;
  struct BinaryTreeNode* left;
  struct BinaryTreeNode* right;
}TreeNode;
TreeNode* BuyTreeNode(int x)
{
  TreeNode* node = (TreeNode*)malloc(sizeof(TreeNode));
  assert(node);
  node->data = x;
  node->left = NULL;
  node->right = NULL;
  return node;
}
TreeNode* CreatTree()
{
  TreeNode* node1 = BuyTreeNode(1);
  TreeNode* node2 = BuyTreeNode(2);
  TreeNode* node3 = BuyTreeNode(3);
  TreeNode* node4 = BuyTreeNode(4);
  TreeNode* node5 = BuyTreeNode(5);
  TreeNode* node6 = BuyTreeNode(6);
  node1->left = node2;
  node1->right = node4;
  node2->left = node3;
  //node2->right = NULL;
  //node3->left = NULL;
  //node3->right = NULL;
  node4->left = node5;
  node4->right = node6;
  //node5->left = NULL;
  //node5->right = NULL;
  //node6->left = NULL;
  //node6->right= NULL;
  return node1;
}
void PrevOrder(TreeNode* root)
{
  if(root == NULL)
  {
    printf("N ");
    return;
  }
  printf("%d ", root->data);
  PrevOrder(root->left);
  PrevOrder(root->right);
}
void InOrder(TreeNode* root)
{
  if (root == NULL)
  {
    printf("N ");
    return;
  }
  InOrder(root->left);
  printf("%d ", root->data);
  InOrder(root->right);
}
void LaterOrder(TreeNode* root)
{
  if (root == NULL)
  {
    printf("N ");
    return;
  }
  LaterOrder(root->left);
  LaterOrder(root->right);
  printf("%d ", root->data);
}
//总结点个数
int TreeSize(TreeNode* root)
{
  return root == NULL ? 0 :
    TreeSize(root->left) +
    TreeSize(root->right) + 1;
}
//叶子结点个数
int TreeLeafSize(TreeNode* root)
{
  //空树 返回0
  if (root == NULL)
    return 0;
  //非空树,但是没有左右子树(叶子结点/仅有一个结点的树)返回1
  if (root->left == NULL && root->right == NULL)
    return 1;
  //不是空 也不是叶子结点
  return TreeLeafSize(root->left) +
    TreeLeafSize(root->right);
}
//树的高度
int TreeHeight(TreeNode* root)
{
  if (root == NULL)
    return 0;
  int leftHeight = TreeHeight(root->left);
  int rightHeight = TreeHeight(root->right);
  return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
//第k层结点的个数
int TreeLevelK(TreeNode* root,int k)
{
  assert(k > 0);
  if (root == NULL)
    return 0;
  if (k == 1)
    return 1;
  return TreeLevelK(root->left, k - 1) +
    TreeLevelK(root->right,k-1);
}
//查找值为x的结点,返回值为指针
TreeNode* TreeFind(TreeNode* root, BTDataType x)
{
  if (root == NULL)
    return NULL;
  if (root->data == x)
    return root;
  TreeNode* ret1 = TreeFind(root->left, x);
  if (ret1)
    return ret1;
  TreeNode* ret2 = TreeFind(root->right, x);
  if (ret2)
    return ret2;
  return NULL;
}
查找值为x的结点,返回值为布尔类型
//bool TreeFind(TreeNode* root, BTDataType x)
//{
//  if (root == NULL)
//    return NULL;
//  if (root->data == x)
//    return root;
//
//  return TreeFind(root->left, x) || TreeFind(root->right, x);
//}
int main()
{
  TreeNode* root = CreatTree();
  //前、中、后序遍历
  PrevOrder(root);
  printf("\n");
  InOrder(root);
  printf("\n");
  LaterOrder(root);
  printf("\n");
  //获取二叉树中的结点个数 
  printf("TreeSize:%d\n", TreeSize(root));
  //叶子结点个数
  printf("TreeLeafSize:%d\n",TreeLeafSize(root));
  //树的高度
  printf("TreeHeight:%d\n", TreeHeight(root));
  //第k层结点个数
  int k = 2;
  printf("TreeLevelK: % d\n", TreeLevelK(root,k));
  //查找值为x的结点
  int x = 2;
  printf("TreeLevelK: % d\n", TreeLevelK(root, x));
  //查找值为x的结点
  if (TreeFind(root, 5))
    printf("找到了\n");
  else
    printf("没找到\n");
  return 0;
}

~over~

相关文章
|
11月前
|
敏捷开发 监控 安全
螺旋模型是什么?在软件开发中如何降低风险?
螺旋模型是一种结合了瀑布模型和快速原型模型的软件开发方法,强调风险分析的重要性。每个迭代周期包含计划制定、风险分析、工程实施和客户评估四个阶段,旨在通过持续的风险管理和客户反馈,提高软件质量和项目成功率。该模型由Barry Boehm于1988年提出,适用于需求不稳定、高风险的项目。
|
Web App开发 移动开发 小程序
UniApp 自定义条件编译详细使用流程
UniApp 自定义条件编译详细使用流程
665 0
|
算法 Unix Linux
【C/C++ 实用工具】性能分析工具一览
【C/C++ 实用工具】性能分析工具一览
865 0
|
12月前
|
Linux
linux中查看某个文件夹下文件的个数和大小
这篇文章介绍了在Linux系统中使用各种命令(如`stat`、`wc`、`du`和`ls`)来查看文件夹下文件的个数和大小的方法。
2081 5
linux中查看某个文件夹下文件的个数和大小
|
12月前
|
存储 缓存 移动开发
uinapp的setStorageSync和setStorage的区别
uinapp的setStorageSync和setStorage的区别
|
网络安全 数据安全/隐私保护 网络架构
ABCDE类网络的划分及保留网段
ABCDE类网络的划分及保留网段
3019 7
|
10月前
|
存储 编解码 算法
发到朋友圈的图片为什么会变糊?iPhone的live实况图是什么格式的图片?
本文介绍了iPhone Live实况图的格式(.livp)、社交平台图片变糊的原因、图像编码压缩的基本过程(变换、量化、熵编码),以及HEIF格式及其与HEVC的关系。HEIF格式具有体积小、颜色丰富、内容灵活等优势,适用于高效图像存储与传输。
利用信号量实现线程顺序执行
【8月更文挑战第24天】本文介绍了如何运用信号量确保多线程程序中线程按预定顺序执行的方法。信号量作为同步机制,可有效控制共享资源访问,防止数据不一致。实现步骤包括:引入必要的头文件(如 `&lt;pthread.h&gt;` 和 `&lt;semaphore.h&gt;`),定义信号量变量(如 `sem_t` 类型),初始化信号量(通常第一个信号量设为1,其余设为0),以及创建线程(每个线程执行特定任务并释放相应信号量)。
163 1
|
11月前
|
网络架构 CDN
【数据结构】判断二叉树是否是完全二叉树
【数据结构】判断二叉树是否是完全二叉树
509 5