二叉树的结点个数、叶子结点个数的代码实现<分治算法>

简介: 二叉树的结点个数、叶子结点个数的代码实现<分治算法>


                                                               

<你想看的我这里都有😎 >

分治算法

概念:是一种将问题划分为更小的子问题,并通过解决子问题来解决原始问题的算法设计策略

分治算法的基本思想:

  1. 分解:将原始问题划分成若干个规模较小且相互独立的子问题。这里关键是要找到一个适当的方式将原始问题切割成更小规模的子问题,使得每个子问题都与原始问题具有相同或类似结构
  2. 解决:递归地求解各个子问题。对于规模较小而直接可求解的情况,直接给出答案;对于规模较大而无法直接求解时,则继续应用该算法来进一步划分为更小的子问题并进行求解
  3. 合并:将各个子结果合并成最终结果。在所有子任务都被独立地处理和求得结果之后,需要把这些局部结果合并起来以获得整体上正确且有效率的最终输出

可以应用分治算法来解决的问题的特点:

1、原问题可以分解为多个子问题

子问题与原问题相比,只是问题的规模有所降低,其结构和求解方法与原问题相同或相似

2、原问题在分解过程中,递归地求解子问题

由于递归都必须有一个终止条件,故当分解后的子问题规模足够小时,应能够直接求解

3、在求解并得到各个子问题的解后

应能够采用某种方式、方法合并或构造出原问题的解

结论:由于子问题与原问题在结构和解法上的相似性,用分治方法解决的问题,大都采用了递归的形式🥰

二叉树的创建

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
typedef int BTDataType;
typedef struct BinaryTreeNode
{
  BTDataType data;
  struct BinaryTreeNode* left;
  struct BinaryTreeNode* right;
}TreeNode;
TreeNode* BuyTreeNode(int x)
{
  TreeNode* node = (TreeNode*)malloc(sizeof(TreeNode));
  assert(node);
  node->data = x;
  node->left = NULL;
  node->right = NULL;
  return node;
}
TreeNode* CreatTree()
{
  TreeNode* node1 = BuyTreeNode(1);
  TreeNode* node2 = BuyTreeNode(2);
  TreeNode* node3 = BuyTreeNode(3);
  TreeNode* node4 = BuyTreeNode(4);
  TreeNode* node5 = BuyTreeNode(5);
  TreeNode* node6 = BuyTreeNode(6);
  node1->left = node2;
  node1->right = node4;
  node2->left = node3;
  //node2->right = NULL;
  //node3->left = NULL;
  //node3->right = NULL;
  node4->left = node5;
  node4->right = node6;
  //node5->left = NULL;
  //node5->right = NULL;
  //node6->left = NULL;
  //node6->right= NULL;
  return node1;
}
int main()
{
  TreeNode* root = CreatTree();
  return 0;
}

结点个数计算

错误方法

int TreeSize(TreeNode* root)
{
  if (root == NULL)
    return;
  int size = 0;
  ++size;
  TreeSize(root->left);
  TreeSize(root->right);
  return size;
}

       这是因为每一次的递归都会开辟出一个帧栈,而每一块的帧栈中都会有一个size且声明周期仅只在自己的帧栈范围内,在调用返回时所有的size并不会相加然后一起返回,简单来说就是size的生命周期有限

不便利方法

//二叉树代码
.....
static int size = 0;
int TreeSize(TreeNode* root)
{
  if (root == NULL)
    return;
  ++size;
  TreeSize(root->left);
  TreeSize(root->right);
  return size;
}
int main()
{
  TreeNode* root = CreatTree();
  printf("TreeSize:%d\n", TreeSize(root));
  printf("TreeSize:%d\n", TreeSize(root));
  printf("TreeSize:%d\n", TreeSize(root));
  printf("TreeSize:%d\n", TreeSize(root));
  return 0;
}

       基于上次生命周期的问题,我们想到了用static来延长局部变量的生命周期,此时size的生命周期就是整个程序,但是当我们连续三次打印时发现三次的结果都不一样,每次都比上次的结果增加了6?这也是使用static的副作用,因为被static修饰的变量(静态变量)在整个程序中只会初始化一次,当第二次使用该静态变量时,此次的结果与上次的结果叠加,从而出现意料之外的问题

我们需要在首次打印后,后续的每次打印前将该静态变量人为置空后才能正常使用:

//二叉树代码
.....
static int size = 0;
int TreeSize(TreeNode* root)
{
  if (root == NULL)
    return;
  ++size;
  TreeSize(root->left);
  TreeSize(root->right);
  return size;
}
int main()
{
  TreeNode* root = CreatTree();
  printf("TreeSize:%d\n", TreeSize(root));
    size = 0;
  printf("TreeSize:%d\n", TreeSize(root));
    size = 0;
  printf("TreeSize:%d\n", TreeSize(root));
    size = 0;
  printf("TreeSize:%d\n", TreeSize(root));
  return 0;
}


使用全局变量也是一样的效果,只需要对代码进行简单的更改即可:

//二叉树代码
.....
int size = 0;
void TreeSize(TreeNode* root)
{
  if (root == NULL)
    return;
  ++size;
  TreeSize(root->left);
  TreeSize(root->right);
}
int main()
{
  TreeNode* root = CreatTree();
  TreeSize(root);
  printf("TreeSize:%d\n", size);
  size = 0;
  TreeSize(root);
  printf("TreeSize:%d\n", size);
  size = 0;
  TreeSize(root);
  printf("TreeSize:%d\n", size);
  size = 0;
  TreeSize(root);
  printf("TreeSize:%d\n", size);
  return 0;
}

基于分治思想的方法

//二叉树总结点个数
int TreeSize(TreeNode* root)
{
  return root == NULL ? 0 :
    TreeSize(root->left) +
    TreeSize(root->right) + 1;
}

解释:主体逻辑就是判断此时所处结点的值是否为空,若不为空则进行左递归,左递归结束后进行右递归,每一次左右递归完全结束后就会返回一个1,每次返回的结果可以叠加

叶子结点个数

//叶子结点个数
int TreeLeafSize(TreeNode* root)
{
  //空树 返回0
  if (root == NULL)
    return 0;
  //非空树,但是没有左右子树(叶子结点/仅有一个结点的树)返回1
  if (root->left == NULL && root->right == NULL)
    return 1;
  //不是空 也不是叶子结点
  return TreeLeafSize(root->left) +
    TreeLeafSize(root->right);
}

解释:主体逻辑与获取结点总数时没有区别,但是这里增加了一个用于判断叶子结点的判断条件,因为叶子结点的特殊性(没有左右子树),所以我们的返回1的操作操作必须要在确定该结点为叶子结点时才会返回

~over~

相关文章
|
1月前
|
算法
【❤️算法笔记❤️】-每日一刷-19、删除链表的倒数第 N个结点
【❤️算法笔记❤️】-每日一刷-19、删除链表的倒数第 N个结点
63 1
|
3天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
6天前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
21 5
|
6天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
23 2
|
9天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
19 0
|
15天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
17 3
|
14天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
27天前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
|
27天前
|
搜索推荐
插入排序算法的讲解和代码
【10月更文挑战第12天】插入排序是一种基础的排序算法,理解和掌握它对于学习其他排序算法以及数据结构都具有重要意义。你可以通过实际操作和分析,进一步深入了解插入排序的特点和应用场景,以便在实际编程中更好地运用它。
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
18 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)