前言
之前小六六一直觉得自己的算法比较菜,算是一个短板吧,以前刷题也还真是三天打鱼,两台晒网,刷几天,然后就慢慢的不坚持了,所以这次,借助平台的活动,打算慢慢的开始开刷,并且自己还会给刷的题总结下,谈谈自己的一些思考,和自己的思路等等,希望对小伙伴能有所帮助吧,也可以借此机会把自己短板补一补,希望自己能坚持下去呀
- 六六力扣刷题贪心算法之基础和最大子序和
- 六六力扣刷题贪心算法之买卖股票的最佳时机
- 六六力扣刷题贪心算法之买卖股票的最佳时机2
- 六六力扣刷题贪心算法之买卖股票的最佳时机含手续费
- 六六力扣刷题贪心算法之跳跃游戏
题目
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
- 输入: g = [1,2,3], s = [1,1]
- 输出: 1 解释:你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。所以你应该输出1。
示例 2:
- 输入: g = [1,2], s = [1,2,3]
- 输出: 2
- 解释:你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。你拥有的饼干数量和尺寸都足以让所有孩子满足。所以你应该输出2.
提示:
- 1 <= g.length <= 3 * 10^4
- 0 <= s.length <= 3 * 10^4
- 1 <= g[i], s[j] <= 2^31 - 1
思路
为了满足更多的小孩,就不要造成饼干尺寸的浪费。
大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。
这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。
题解
class Solution { public int findContentChildren(int[] g, int[] s) { //排序 Arrays.sort(g); Arrays.sort(s); int start = s.length - 1; int count = 0; for (int i = g.length - 1; i >= 0; i--) { //尽量让大大胃口吃饱 if (start >= 0 && g[i] <= s[start]) { start--; count++; } } return count; } }
- 其实我们就从大胃口开始,一直往下遍历,然后记录下能有几个可以满足的就行了,哈哈这题还是简单题
结束
好了,原来是简单题,我说这么简单,好了,我是小六六,三天打鱼,两天晒网!