☆打卡算法☆LeetCode 221. 最大正方形 算法解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: ☆打卡算法☆LeetCode 221. 最大正方形 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“在0和1组成的矩阵中找到只包含1的最大正方形,返回其面积。”

2、题目描述

在一个由 '0''1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。

1702384362171.jpg

示例 1:
输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4
示例 2:
输入: matrix = [["0","1"],["1","0"]]
输出: 1

二、解题

1、思路分析

题意要在0和1组成的二维矩阵中找到只包含1的最大正方形,返回其面积。

由于正方形的面积等于边长的平方,因此要找到最大的正方形的面积,就需要找到最大正方形的边长,然后计算最大边长的平方即可。

具体的,就是遍历矩阵中的每个元素,遇到1,则将钙元素作为正方形的左上角。

确定左上角后,根据左上角的行和列计算可能的正方形的边长,在行数和列数的范围内找出只包含1的最大正方形。

每次右或下新增一行,判断新增的行和列是否满足所有元素都是1。

2、代码实现

代码参考:

class Solution {
    public int maximalSquare(char[][] matrix) {
        int maxSide = 0;
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
            return maxSide;
        }
        int rows = matrix.length, columns = matrix[0].length;
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < columns; j++) {
                if (matrix[i][j] == '1') {
                    // 遇到一个 1 作为正方形的左上角
                    maxSide = Math.max(maxSide, 1);
                    // 计算可能的最大正方形边长
                    int currentMaxSide = Math.min(rows - i, columns - j);
                    for (int k = 1; k < currentMaxSide; k++) {
                        // 判断新增的一行一列是否均为 1
                        boolean flag = true;
                        if (matrix[i + k][j + k] == '0') {
                            break;
                        }
                        for (int m = 0; m < k; m++) {
                            if (matrix[i + k][j + m] == '0' || matrix[i + m][j + k] == '0') {
                                flag = false;
                                break;
                            }
                        }
                        if (flag) {
                            maxSide = Math.max(maxSide, k + 1);
                        } else {
                            break;
                        }
                    }
                }
            }
        }
        int maxSquare = maxSide * maxSide;
        return maxSquare;
    }
}

1702384388890.jpg

3、时间复杂度

时间复杂度:O(mn min(m,n)2)

其中m和n是矩阵的行数和列数。

空间复杂度:O(1)

只需要常数级的变量空间。

三、总结

遍历整个矩阵寻找每个1,所需要的时间复杂度为O(mn)。

对于每个可能的正方形的边长都不会超过行数和列数,因此遍历该正方形的每个元素,并且判断是不是只包含1的时间复杂度为O(min(m,n)2)。

相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
47 0
|
29天前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
1月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
9天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
13天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
46 4
|
14天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
1月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
23 2
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
37 1
|
1月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-SGD算法解析
SGD(随机梯度下降)是机器学习中常用的优化算法,特别适用于大数据集和在线学习。与批量梯度下降不同,SGD每次仅使用一个样本来更新模型参数,提高了训练效率。本文介绍了SGD的基本步骤、Python实现及PyTorch中的应用示例。
33 0

推荐镜像

更多