☆打卡算法☆LeetCode 204. 计数质数 算法解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: ☆打卡算法☆LeetCode 204. 计数质数 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“给定整数n,返回所有小于整数n的质数的数量。”

2、题目描述

给定整数 n ,返回 所有小于非负整数 n 的质数的数量

示例 1:
输入: n = 10
输出: 4
解释: 小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
示例 2:
输入: n = 0
输出: 0

二、解题

1、思路分析

题意要求出所有小于整数n的质数的数量。

统计质数数量有很多方法,直观的思路是枚举每个数判断是不是质数。

首先来看一下质数的性质:

  • 在大于的1的自然数中,除了1和它本身以外不再有其他因数的自然数。

根据质数的性质,对于每个数x,可以枚举[2,x-1]中的每个数y,判断y是否为x的因数,但是这样时间复杂度过高,需要考虑其他方法。

考虑到如果y是x的因数,那么xy\frac{x}{y}yx必然也是x的因数,因此只要校验y或者xy\frac{x}{y}yx即可。

进一步思考,只需要校验y和xy\frac{x}{y}yx之间的较小值,较小值会落在 [2,x\sqrt{x}x] 的区间中,因此只需要枚举 [2,x\sqrt{x}x] 区间中中的所有数即可。

2、代码实现

代码参考:

class Solution {
    public int countPrimes(int n) {
        int ans = 0;
        for (int i = 2; i < n; ++i) {
            ans += isPrime(i) ? 1 : 0;
        }
        return ans;
    }
    public boolean isPrime(int x) {
        for (int i = 2; i * i <= x; ++i) {
            if (x % i == 0) {
                return false;
            }
        }
        return true;
    }
}

1702382116350.jpg

3、时间复杂度

时间复杂度:O(nx\sqrt{x}x)

单个数检查的时间复杂度为O(x\sqrt{x}x),一共要检查O(n)个数,因此总时间复杂度为O(nx\sqrt{x}x)。

空间复杂度:O(1)

只需要常数级的变量空间。

三、总结

枚举每个数字是否为质数。

判断素数的方法参考定义,对于某个数字 n,i 从 2 开始枚举判断是否满足 n % i == 0 ,如果找到了 n 的因子,就返回 false。

注意 i 遍历到最大 n\sqrt{n}n 即可。

因为 n 如果不是质数,那么至少有一个因子是小于等于 n\sqrt{n}n 的。

如果某个因子 x >= n\sqrt{n}n ,那么 nx\frac{n}{x}xn <= x,而 nx\frac{n}{x}xn 也是 n 的因子)。


相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
47 0
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
1月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
12天前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
16天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
50 4
|
17天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
1月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
24 2
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-RMSprop算法解析
关注B站【肆十二】,观看更多实战教学视频。本期介绍深度学习中的RMSprop优化算法,通过调整每个参数的学习率来优化模型训练。示例代码使用PyTorch实现,详细解析了RMSprop的参数及其作用。适合初学者了解和实践。
37 1
|
1月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
1月前
|
机器学习/深度学习 算法 PyTorch
Pytorch-SGD算法解析
SGD(随机梯度下降)是机器学习中常用的优化算法,特别适用于大数据集和在线学习。与批量梯度下降不同,SGD每次仅使用一个样本来更新模型参数,提高了训练效率。本文介绍了SGD的基本步骤、Python实现及PyTorch中的应用示例。
36 0

推荐镜像

更多