【算法训练-排序算法 三】【排序应用】合并区间

简介: 【算法训练-排序算法 三】【排序应用】合并区间

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【合并区间】,使用【数组】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为:目标公司+最近一年+出现频率排序,由高到低的去牛客TOP101去找,只有两个地方都出现过才做这道题(CodeTop本身汇聚了LeetCode的来源),确保刷的题都是高频要面试考的题。

明确目标题后,附上题目链接,后期可以依据解题思路反复快速练习,题目按照题干的基本数据结构分类,且每个分类的第一篇必定是对基础数据结构的介绍

合并区间【MID】

一道一直想要解决的高频题,用到了排序

题干

解题思路

如果我们按照区间的左端点排序,那么在排完序的列表中,可以合并的区间一定是连续的。如下图所示,标记为蓝色、黄色和绿色的区间分别可以合并成一个大区间,它们在排完序的列表中是连续的

我们用数组 merged 存储最终的答案。

  • 首先,我们将列表中的区间按照左端点升序排序。然后我们将第一个区间加入 merged 数组中,并按顺序依次考虑之后的每个区间:
  • 如果当前区间的左端点在数组 merged 中最后一个区间的右端点之后,那么它们不会重合,我们可以直接将这个区间加入数组 merged 的末尾;
  • 否则,它们重合,我们需要用当前区间的右端点更新数组 merged 中最后一个区间的右端点,将其置为二者的较大值。

总体思路是左端点从小到大排列,每次比较只要比较新区间的左端点是否在已合并区间右端点之后就可以了,在之后则独立,在之前则重叠(而且由于左端点升序,在之前也是在之前已合并区间的中间,极端情况是和已排序区间左端点重叠)

代码实现

给出代码实现基本档案

基本数据结构数组

辅助数据结构

算法快速排序(分治算法)、二分查找

技巧双指针

import java.util.*;
/*
 * public class Interval {
 *   int start;
 *   int end;
 *   public Interval(int start, int end) {
 *     this.start = start;
 *     this.end = end;
 *   }
 * }
 */
public class Solution {
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     *
     * @param intervals Interval类ArrayList
     * @return Interval类ArrayList
     */
    public ArrayList<Interval> merge (ArrayList<Interval> intervals) {
        // 1 先对集合进行排序
        intervals.sort(Comparator.comparingInt(interval -> interval.start));
        // 2 遍历顺序数组进行合并
        ArrayList<Interval> result = new ArrayList<Interval>();
        for (Interval interval : intervals) {
            // 2-1 获取当前区间左右端点和已合并区间右端点
            int leftPoint = interval.start;
            int rightPoint = interval.end;
            // 2-2 如果结果区间为空或者当前区间左端点大于已合并区间右端点,则当前区间作为独立子区间加入集合
            if (result.size() == 0 || leftPoint > result.get(result.size() - 1).end) {
                result.add(interval);
            } else {
            // 2-3 否则认为当前区间与已合并区间有重叠,只需更新合并区间右端点
                result.get(result.size() - 1).end =  Math.max(result.get(result.size() - 1).end, rightPoint);
            }
        }
        return result;
    }
}

leetcode数组入参的处理方法:

import java.util.*;
public class Solution {
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     *
     * @param n int整型 the n
     * @return int整型
     */
    public int[][] merge(int[][] intervals) {
        // 1 先对数组进行排序
        Arrays.sort(intervals, Comparator.comparingInt(interval->interval[0]));
        // 2 遍历已排序数组,进行区间合并
        int[][] result = new int[intervals.length][2];
        int idx = -1;
        for (int[] interval : intervals) {
            // 2-1 获取当前区间左右边界以及合并区间右边界
            int leftPoint = interval[0];
            int rightPoint = interval[1];
            // 2-2 如果已合并区间为空,或当前区间左端点大于已合并区间右端点,则不重叠
            if (idx == -1 || result[idx][1] < leftPoint) {
                idx++;
                result[idx] = interval;
            } else {
                // 2-3 反之则重叠,已两个区间较大值为新的右边界
                result[idx][1] = Math.max(result[idx][1], rightPoint);
            }
        }
        return Arrays.copyOf(result, idx + 1);
    }
}

复杂度分析

合并区间是一个常见的算法问题,通常用于合并具有重叠部分的区间,以简化问题或提供更清晰的表示。以下是关于合并区间问题的时间复杂度和空间复杂度的讨论:

时间复杂度:

时间复杂度是衡量算法性能的关键指标,它表示算法在输入规模增加时所需的运行时间。对于合并区间问题,一种常见的解决方法是首先将区间按照起始值进行排序,然后遍历这些区间并合并它们。

  1. 排序:对区间按照起始值进行排序通常需要 O(n*log(n)) 的时间复杂度,其中 n 是区间的数量。
  2. 遍历和合并:一旦区间排序完成,遍历区间并合并重叠的部分通常需要线性时间,即 O(n)

因此,综合来看,合并区间的时间复杂度通常是 O(n*log(n)),其中 n 是区间的数量。这是由排序操作的时间复杂度主导的。

空间复杂度:

空间复杂度表示算法在执行过程中所需的额外内存空间。对于合并区间问题,空间复杂度通常取决于存储合并后的区间的数据结构。

  1. 如果您在原始区间上就地修改,而不创建额外的数据结构,则空间复杂度是 O(1),因为不需要额外的内存空间。
  2. 如果您创建一个新的数据结构来存储合并后的区间,空间复杂度将取决于这个数据结构的大小。通常情况下,合并后的区间数目会少于或等于初始区间数目,因此空间复杂度也是 O(n)

总结:合并区间问题的时间复杂度通常是 O(n*log(n)),空间复杂度可以是 O(1) 或 O(n),具体取决于是否创建了新的数据结构来存储合并后的区间。

拓展知识:Arrays的用法

Arrays的一些用法拓展描述下

Arrays.copyOf(result, x)描述了什么

Arrays.copyOf(result, x) 是一个Java方法,它的含义是创建一个新数组,这个新数组的长度为 x,并且将原始数组 result 中的元素复制到新数组中。如果 x 小于原始数组的长度,那么新数组将截断,只包含原始数组中前 x 个元素。如果 x 大于原始数组的长度,新数组将在末尾用默认值填充,这个默认值取决于元素的数据类型,例如,数值类型默认是0,引用类型默认是null

这个方法允许你在不改变原始数组的情况下创建一个具有不同长度的新数组,非常方便,特别是在需要调整数组大小时。例如:

int[] result = {1, 2, 3, 4, 5};
int x = 8; // 新数组的长度
int[] newArray = Arrays.copyOf(result, x);
// 新数组现在将会是 {1, 2, 3, 4, 5, 0, 0, 0},长度为 8

在这个示例中,Arrays.copyOf 创建了一个长度为8的新数组,并将原始数组 result 中的元素复制到新数组中,多出的部分用0填充。

Arrays.sort(intervals, Comparator.comparingInt(interval->interval[0])) 描述下这个语句做了什么

这个语句使用了 Java 中的 Arrays.sort 方法来对一个二维数组 intervals 进行排序。排序是基于二维数组中每个子数组的第一个元素(interval[0])的值来进行的,也就是按照子数组的起始值进行排序。

具体来说,这行代码的功能是:

  1. intervals 是一个二维整数数组,通常用于表示区间(例如,区间的起始和结束值)。
  2. Arrays.sort 是 Java 中用于对数组进行排序的方法。
  3. Comparator.comparingInt(interval -> interval[0]) 是一个比较器,它告诉排序方法要按照每个子数组的第一个元素(interval[0])的值进行升序排序。

所以,这个语句将根据 intervals 中每个子数组的第一个元素(起始值)来对二维数组进行排序,从小到大排列。排序后,intervals 数组中的子数组将按照它们的起始值从小到大的顺序排列。

这对于处理区间的问题非常有用,因为它可以将区间按照起始值进行排序,使得你可以更轻松地执行各种区间操作,比如合并重叠区间或查找包含某个点的区间等操作。

相关文章
|
10天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
51 8
|
10天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
41 7
|
13天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
24 0
|
25天前
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
27 1
|
25天前
|
监控 算法 数据挖掘
HyperLogLog算法有哪些应用场景呢
【10月更文挑战第19天】HyperLogLog算法有哪些应用场景呢
15 0
|
25天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
10天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
12天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
11天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。