前言:
前面我们讲了二叉树的顺序结构 和 二叉树的链式结构,将二叉树的基本知识和实现过程都了解了一遍,那么本期我们来看看关于二叉树的经典例题都有哪些,在此之前,我们需要了解二叉树的性质,那么话不多说,我们直接开始!!!
一、
1. 在用树表示的目录结构中,从根目录到任何数据文件,有( )通道
A.唯一一条
B.二条
C.三条
D.不一定
题解: A
树的特点是不相交,所以不可能有多个路径同时到达一个点。
二、
2. 在一颗度为3的树中,度为3的结点有2个,度为2的结点有1个,度为1的结点有2个,则叶子结点有( )个
A.4
B.5
C.6
D.7
题解: C
设度为i的节点个数为ni, 该树总共有n个节点,则n=n0+n1+n2+n3.
有n个节点的树的总边数为n-1条.
根据度的定义,总边数与度之间的关系为:n-1=0*n0+1*n1+2*n2+3*n3.
联立两个方程求解,可以得到n0 = n2 + 2n3 + 1, n0=6
或者可以通过画图来解答:
三、
3. 一颗拥有1000个结点的树度为4,则它的最小深度是( )
A.5
B.6
C.7
D.8
题解: B
如果这棵树每一层都是满的,则它的深度最小,树的度为4,那么假设它为一个四叉树,高度为h,则这个树的节点个数为(4^h - 1) / 3,当h = 5, 最大节点数为341, 当h = 6, 最大节点数为1365,所以最小深度应该为6。
四、
4. 下列关于二叉树的叙述错误的是( )
A.二叉树指的是深度为 2 的树
B.一个 n 个结点的二叉树将拥有 n-1 条边
C.一颗深度为 h 的满二叉树拥有 2^h-1 个结点(根结点深度为1)
D.二叉树有二叉链和三叉链两种表示方式
题解: A
A错误: 二叉树指最大孩子个数为2,即树的度为二的树。深度描述的为树的层数。
B正确: 对于任意的树都满足:边的条数比节点个数少1,因为每个节点都有双亲,但是根节点没有
C正确: 正确,参照二叉树的性质
D正确: 二叉链一般指孩子表示法,三叉连指孩子双亲表示法,这两种方式是二叉树最常见的表示方式,虽然还有孩子兄弟表示法,该中表示方式本质也是二叉链
五、
5. 一颗完全二叉树有1001个结点,其叶子结点的个数是( )
A.251
B.500
C.501
D.不能确定
题解: C
该题需要用到二叉树性质:在任意二叉树中,度为0的节点都比度为2的节点多1个,即 n0 = n2 + 1另外,在完全二叉树中,如果节点总个数为奇数,则没有度为1的节点,如果节点总个数为偶数,只有一个度为1的节点。
因此:n0 + n1 + n2 = 1001 节点总数为奇数,没有度为1的节点
n0 + 0 + n2 = 2*n0-1 = 1001 n0 = 501
六、
6. 在一颗完全二叉树中,某一个结点没有其左孩子,则该结点一定( )
A.是根结点
B.是叶结点
C.是分支结点
D.在倒数第二层
题解: B
完全二叉树中如果一个节点没有左孩子,则一定没有右孩子,必定为一个叶子节点,最后一层一定为叶子节点,但是倒数第二层也可能存在叶子节点。
七、
7. 设一棵二叉树中有3个叶子结点,有8个度为1的结点,则该二叉树中总的结点数为( )个
A.11
B.12
C.13
D.14
题解: C
设Ni表示度为i的节点个数,则节点总数 N = N0 + N1 + N2
节点个数于节点边的关系: N个节点的树有N-1个边
边与度的关系:N - 1 = N1 + 2 * N2
故:N0 + N1 + N2 - 1 = N1 + 2 * N2
因此,得:N0 = N2 + 1
回到原题,N0 = 3,N1 = 8,可得N2 = 2。
因此答案是 3 + 8 + 2 = 13。
八、
8. 已知某二叉树的前序遍历序列为5 7 4 9 6 2 1,中序遍历序列为4 7 5 6 9 1 2,则其后序遍历序列为( )
A.4 2 5 7 6 9 1
B.4 2 7 5 6 9 1
C.4 7 6 1 2 9 5
D.4 7 2 9 5 6 1
题解: C
要知道后序遍历首先得将二叉树的结构还原出来,由于前序遍历首先访问的是根节点,所以5是根节点,然后在中序遍历的结果中找到5,5的左边就是一根节点为5的一颗左子树,右边就是一颗右子树,然后再找7,7的右边和左边又是两颗树,依次类推:
故:根为: 5
5的左子树:4 7 5的右子树: 6 9 1 2
5的左子树的根为: 7 5的右子树的根为:9
7的左子树: 4 7的右:空 9的左子树:6 9的右子树:2
故这棵树的结构为:
九、
9. 已知某二叉树的中序遍历序列为JGDHKBAELIMCF,后序遍历序列为JGKHDBLMIEFCA,则其前序遍历序列为( )
A.ABDGHJKCEFILM
B.ABDGJHKCEILMF
C.ABDHKGJCEILMF
D.ABDGJHKCEIMLF
题解: B
由后序遍历确定子树的根,后序遍历从后向前看,最后一个元素为根,和前序遍历刚好相反,从后向前看后序遍历,应该是根,右,左,根据中序遍历确定子树的左右区间
故:根为: A
A的左子树:JGDHKB A的右子树:ELIMCF
A的左子树的根:B A的右子树的根:C
B的左子树:JGDHK B的右子树:空 C的左子树:ELIM C的右子树:F
B的左子树的根:D C的左子树根:E
D的左子树的根:G D的右子树的根:H E的右子树的根:I
故树的结构为:
朋友们、伙计们,美好的时光总是短暂的,我们本期的的分享就到此结束,预知后事如何请听下回分解~~~最后看完别忘了留下你们弥足珍贵的三连喔,感谢大家的支持!