认真学习InnoDB的数据存储结构中的区、段与表空间

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 认真学习InnoDB的数据存储结构中的区、段与表空间

前文认真学习InnoDB的数据存储结构我们学习了页并引入了区、段与表空间的概念。认真学习InnoDB的行格式一文中我们学习了数据页的每一行如何存储。本文我们就着重学习区、段与表空间。

首先回顾一下InnoDB的存储结构。基本结构为页,也就是由一个个数据页构成。在数据库中,还存在着区(Extent)、段(Segment)和表空间(Tablespace)的概念。行、页、区、段、表空间的关系如下图所示:


image.png

区(Extent)是比页大一级的存储结构,在InnoDB存储引擎中,一个区会分配64个连续的页。因为InnoDB中的页大小默认是16KB,所以一个区的大小是64*16KB=1MB。

段(Segment)由一个或多个区组成,区在文件系统是一个连续分配的空间(在InnoDB中是连续的64个页),不过在段中不要求区与区之间是相邻的。段是数据库中的分配单位,不同类型的数据库对象以不同的段形式存。当我们创建数据表、索引的时候,就会相应创建对应的段,比如创建一张表时会创建一个表段,创建一个索引时会创建一个索引段。

表空间(Tablespace)是一个逻辑容器,表空间存储的对象是段,在一个表空间中可以有一个或多个段,但是一个段只能属于一个表空间。数据库由一个或多个表空间组成,表空间从管理上可以划分为系统表空间、用户表空间、撤销表空间、临时表空间。

【1】为什么要有区?

B+树中的每一层中的页都会形成一个双向链表,如果是以页为单位来分配存储空间的话,双向链表相邻的两个页之间的物理位置可能离得非常远。

我们学习B+树索引的适用场景的时候特别提到范围查询只需要定位到最左边的记录和最右边的记录,然后沿着双向链表一直扫描就可以了。而如果链表中相邻的两个页物理位置离得非常远,就是所谓的随机IO。再一次强调,磁盘的速度和内存的速度差了好几个数量级,随机IO是非常慢的。所以我们应该尽量让链表中相邻的页的物理位置也相邻,这样进行范围查询的时候才可以使用所谓的顺序IO。

引入区的概念,一个区就是在物理位置上连续的64个页。因为InnoDB中的页大小默认是16KB,所以一个区的大小是64*16KB=1MB。在表中数据量大的时候,为某个索引分配空间的时候就不再按照页为单位分配了,而是按照区位单位分配。甚至在表中的数据特别多的时候,可以一次性分配多个连续的区。虽然可能造成一点点空间的浪费(数据不足以填充满整个区),但是从性能角度来看,可以消除很多随机IO。

区的分类

区大体上可以分为4种类型:

  • 空闲的区(FREE):现在还没有用到这个区中的任何页面
  • 有剩余空间的碎片区(FREE_FRAG):表示碎片区中还有可用的页面
  • 没有剩余空间的碎片区(FULL_FRAG):表示碎片区中的所有页面都被使用,没有空闲页面。
  • 附属于某个段的区(FSEG):每一个索引都可以分为叶子节点段和非叶子节点段

处于FREE、FREE_FRAG以及FULL_FRAG这三种状态的区都是独立的,直属于表空间。而处于FSEG状态的区是附属于某个段的。

【2】为什么要有段

对于范围查询,其实是对B+树叶子节点中的记录进行顺序扫描,而如果不区分叶子节点和非叶子节点,统统把节点代表的页面放到申请到的区中的话,进行范围扫描的效果就大打折扣了。所以InnoDB对B+树的叶子节点和非叶子节点进行了区别对待,也就是说叶子节点有自己独有的区,非叶子节点也有自己独有的区。

存放叶子节点的区的集合就算是一个段(segment),存放非叶子节点的区的集合也算是一个段。也就是说一个索引会生成2个段,一个叶子节点段,一个非叶子节点段。

除了索引的叶子节点段和非叶子节点段之外,InnoDB中还有为存储一些特殊的数据而定义的段,比如回滚段。所以常见的段有数据段、索引段、回滚段数据段即为B+树的叶子节点,索引段即为B+树的非叶子节点

在InnoDB存储引擎中,对段的管理都是由引起自身完成的,DBA不能也没有必要对其进行控制,这从一定程度上简化了DBA对于段的管理。

段其实不对应表空间中某一个连续的物理区域,而是一个逻辑上的概念,由若干个零散的页面以及一些完整的区组成。

【3】为什么要有碎片区

默认情况下,一个使用InnoDB存储引擎的表只有一个聚簇索引,一个索引会生成2个段。而段是以区位单位申请存储空间的,一个区默认占用1MB(64*16KB=1024KB)存储空间,所以默认情况下一个只存了几条记录的小表也需要2M的存储空间么?以后每次添加一个索引都要多申请2M的存储空间么?

这对于存储记录比较少的表简直是天大的浪费。这个问题的症结在于到现在为止我们介绍的区都是非常纯粹的,也就是一个区被整个分配给某一个段,或者说区中的所有页面都是为了存储同一个段的数据而存在的,即使段的数据填不满区中所有的页面,那余下的页面也不能挪作他用。

为了考虑以完整的区位单位分配给某个段对于数据量小的表太浪费存储空间的这种情况,InnoDB提出了一个碎片(fragment)区的概念

在一个碎片区中,并不是所有的页都是为了存储同一个段的数据而存在的,而是碎片区中的页可以用于不同的目的,比如有些页用于段A,有些页用于段B,有些页甚至哪个段都不属于。碎片区直属与表空间,并不属于任何一个段。

所以此后为某个段分配存储空间的策略是这样的:

  • 在刚开始向表中插入数据的时候,段是从某个碎片区以单个页面为单位来分配存储空间的。
  • 当某个段已经占用了32个碎片区页面之后,就会申请以完整的区位单位来分配存储空间。

所以现在段不能仅定义为是某些区的集合,更精确的应该是某些零散的页面以及一些完整的区的集合。

【4】表空间

表空间是一个逻辑容器,表空间存储的对象是段,在一个表空间中可以有一个或多个段,但是一个段只能属于一个表空间。表空间数据由一个或多个表空间组成,表空间从管理上可以划分为系统表空间(System tablespace)、

独立表空间(File-per-table tablespace)、撤销表空间(Undo Tablespace)和临时表空间(Temporary tablespace)等。

① 独立表空间

独立表空间,即每张表有一个独立的表空间,也就是数据和索引信息都会保存在自己的表空间中。独立的表空间(即单表)可以在不同的数据库之间进行迁移。独立表空间是由段、区、页组成的。

空间可以回收(drop table 操作可自动回收表空间,其他情况表空间不能自己回收)。如果对于统计分析或是日志表,删除大量数据后可以通过:alter table tablename engin=innodb; 回收不用的空间。对于使用独立表空间的表,不管怎么删除,表空间的碎片不会太严重的影响性能,而且还有机会处理。

真实表空间对应的文件大小

我们到数据目录里看,会发现一个新建的表对应 .ibd 文件只占用了96K,才6个页面大小(MySQL5.7中)。这是因为一开始表空间占用的空间很小,因为表里边都没有数据。不过这些 .ibd 文件是自扩展的,随着表中数据的增多,表空间对应的文件也逐渐增大。

MySQL8中,一个新建的表对应 .ibd 文件占用了112K,也就是7个页面。因为MySQL8中将 frm 与 ibd 合在了一起为一个 ibd 。

查看InnoDB的表空间类型:

show variables like 'innodb_file_per_table';

如果可以看到 innodb_file_per_table=ON ,这就意味着每张表都会单独保存为一个 .ibd 文件。

② 系统表空间

系统表空间的结构和独立表空间基本类似,只不过由于整个MySQL进程只有一个系统表空间,在系统表空间中会额外记录一些有关整个系统信息的页面,这部分是独立表空间没有的。

InnoDB数据字典(内部系统表)

每当我们向一个表中插入一条记录的时候,MySQL校验过程如下。

先要校验一下插入语句对应的表存不存在,插入的列和表中的列是否符合。如果语法没有问题的话,还需要知道该表的聚簇索引和所有二级索引对应的根页面是哪个表空间的哪个页面,然后把记录插入对应索引的B+树中。

所以说,MySQL除了保存着我们插入的用户数据之外,还需要保存许多额外的信息,比如方说:

  • 某个表属于哪个表空间,表里边有多少列;
  • 表对应的每一个列的类型是什么
  • 该表有多少索引,每个索引对应哪几个字段,该索引对应的根页面在哪个表空间的哪个页面
  • 该表有哪些外键,外键对应哪个表的哪些列
  • 某个表空间对应文件系统上文件路径是什么

上述这些数据并不是我们使用Insert语句插入的用户数据,实际上是为了更好的管理我们这些用户数据而不得已引入的一些额外数据,这些数据也称为“元数据”。InnoDB存储引擎特意定义了一些列的内部系统表(internal system table)来记录这些元数据。

image.png

这些系统表也被称为数据字典,它们都是以B+树的形式保存在系统表空间的某些页面中。其中SYS_TABLES 、SYS_COLUMNS 、SYS_INDEXES 、SYS_FIELDS这四个表尤其重要,称之为基本系统表(basic system tables)

SYS_TABLES表结构

image.png

SYS_COLUMNS表结构

image.png

SYS_INDEXES表结构

image.png

SYS_FIELDS表结构

image.png

注意用户是不能直接访问InnoDB的这些内部系统表,除非你直接去解析系统表空间对应文件系统上的文件。不过考虑到查看这些表的内容可能有助于大家分析问题,所以在系统数据库information_schema中提供了一些以 innodb_sys 开头的表。

use information_schema;
show tables like 'innodb_sys%'
# 得到结果如下
INNODB_SYS_DATAFILES
INNODB_SYS_VIRTUAL
INNODB_SYS_INDEXES
INNODB_SYS_TABLES
INNODB_SYS_FIELDS
INNODB_SYS_TABLESPACES
INNODB_SYS_FOREIGN_COLS
INNODB_SYS_COLUMNS
INNODB_SYS_FOREIGN
INNODB_SYS_TABLESTATS

在information_schema 数据库中的这些以INNODB_SYS开头的表并不是真正的内部系统表(内部系统报就是我们上边以SYS开头的那些表),而是在存储引擎启动时读取这些以SYS开头的系统表,然后填充到这些以INNODB_SYS开头的表中。以INNODB_SYS开头的表和以SYS开头的系统表中的字段并不完全一样,但供大家参考已经足矣。

【5】数据页加载的三种方式

InnoDB从磁盘读取数据的最小单位是数据页,而你想得到的id=xxx 的数据,就是这个数据页众多行中的一行。

对于MySQL存放的数据,逻辑概念上我们称之为表,在磁盘等物理层面而言是按数据页形式进行存放的,当其加载到MySQL中我们称之为缓存页。

如果缓冲池中没有该页数据,那么缓冲池有以下三种读取数据的方式,每种方式的读取效率都是不同的。

① 内存读取

如果该数据存在于内存中,基本上执行的时间在1ms ,效率还是很高的。


1c4e6f4f4c10412fb49d7801bcb82d9e.png

② 随机读取


如果数据没有在内存中,就需要在磁盘上对该页进行查找,整体时间预估在10ms 左右。这10ms中有 6ms 是磁盘的实际繁忙时间(包括了寻道和半圈旋转时间),有3ms是对可能发生的排队时间的估计值,另外还有1ms的传输时间,将页从磁盘服务器缓冲区传输到数据库缓冲区中。这10ms看起来很快,但实际上对于数据库来说消耗的时间已经非常长了,因为这还只是一个页的读取时间。


3919e8c90bcd40eda901cd7df492b99e.png

③ 顺序读取

顺序读取其实是一种批量读取的方式,因为我们请求的数据在磁盘上往往都是相邻存储的,顺序读取可以帮我们批量读取页面。这样的话,一次性加载到缓冲池中就不需要再对其他页面单独进行磁盘IO操作了。

如果一个磁盘的吞吐量是40MB/S,那么对于一个16KB大小的页来说,一次可以顺序读取2560(40mb/16kb)个页,相当于一个页的读取时间为0.4ms。采用批量读取的方式,即使是从磁盘上进行读取,效率也比从内存中只单独读取一个页的效率要高。


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
2月前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的表空间
InnoDB是MySQL默认的存储引擎,主要由存储结构、内存结构和线程结构组成。其存储结构分为逻辑和物理两部分,逻辑存储结构包括表空间、段、区和页。表空间是InnoDB逻辑结构的最高层,所有数据都存放在其中。默认情况下,InnoDB有一个共享表空间ibdata1,用于存放撤销信息、系统事务信息等。启用参数`innodb_file_per_table`后,每张表的数据可以单独存放在一个表空间内,但撤销信息等仍存放在共享表空间中。
|
7月前
|
存储 关系型数据库 MySQL
MySQL数据库——InnoDB引擎-逻辑存储结构(表空间、段、区、页、行)
MySQL数据库——InnoDB引擎-逻辑存储结构(表空间、段、区、页、行)
143 7
|
7月前
|
存储 算法 关系型数据库
【MySQL技术内幕】4.4-InnoDB数据页结构
【MySQL技术内幕】4.4-InnoDB数据页结构
134 1
|
7月前
|
缓存 关系型数据库 MySQL
MySQL数据库——InnoDB引擎-架构-内存结构(Buffer Pool、Change Buffer、Adaptive Hash Index、Log Buffer)
MySQL数据库——InnoDB引擎-架构-内存结构(Buffer Pool、Change Buffer、Adaptive Hash Index、Log Buffer)
115 3
|
7月前
|
存储 关系型数据库 MySQL
【MySQL技术内幕】4.2-InnoDB逻辑存储结构
【MySQL技术内幕】4.2-InnoDB逻辑存储结构
56 0
|
7月前
|
存储 关系型数据库 MySQL
第七章InnoDB数据存储结构
第七章InnoDB数据存储结构
35 0
|
7天前
|
存储 缓存 关系型数据库
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
MySQL的存储引擎是其核心组件之一,负责数据的存储、索引和检索。不同的存储引擎具有不同的功能和特性,可以根据业务需求 选择合适的引擎。本文详细介绍了MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案。
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
|
12天前
|
存储 关系型数据库 MySQL
MySQL存储引擎详述:InnoDB为何胜出?
MySQL 是最流行的开源关系型数据库之一,其存储引擎设计是其高效灵活的关键。InnoDB 作为默认存储引擎,支持事务、行级锁和外键约束,适用于高并发读写和数据完整性要求高的场景;而 MyISAM 不支持事务,适合读密集且对事务要求不高的应用。根据不同需求选择合适的存储引擎至关重要,官方推荐大多数场景使用 InnoDB。
55 7
|
21天前
|
存储 关系型数据库 MySQL
Mysql索引:深入理解InnoDb聚集索引与MyisAm非聚集索引
通过本文的介绍,希望您能深入理解InnoDB聚集索引与MyISAM非聚集索引的概念、结构和应用场景,从而在实际工作中灵活运用这些知识,优化数据库性能。
93 7
|
2月前
|
存储 Oracle 关系型数据库
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件
本文介绍了MySQL InnoDB存储引擎中的数据文件和重做日志文件。数据文件包括`.ibd`和`ibdata`文件,用于存放InnoDB数据和索引。重做日志文件(redo log)确保数据的可靠性和事务的持久性,其大小和路径可由相关参数配置。文章还提供了视频讲解和示例代码。
154 11
【赵渝强老师】MySQL InnoDB的数据文件与重做日志文件