【MATLAB】 稳健的经验模式分解REMD信号分解算法

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 【MATLAB】 稳健的经验模式分解REMD信号分解算法


1 基本定义

稳健的经验模式分解(Robust Empirical Mode Decomposition,简称REMD)是一种改进的经验模式分解方法,它能够应对一些EMD无法应对的问题,例如数据过于嘈杂,或者数据存在不规则的离群值等。

REMD是通过采用自适应筛分停止标准(SSSC)来实现的。SSSC是一种软筛选停止标准,它通过从混合信号中提取出一组单分量信号(称为固有模式函数IMF),来自动停止EMD的筛分过程。REMD方法在实现过程中,先使用几个工具箱中的函数,然后编写自己的代码,以实现整个算法。

REMD算法的步骤具体包括以下几个方面:

  1. 数据预处理:由于实际信号中可能存在噪声或异常值,需要对原始信号进行预处理。REMD方法采用稳健性统计方法,如中位数滤波器,对原始信号进行去噪和异常值处理。
  2. 经验模式分解:将预处理后的信号进行经验模式分解(EMD),得到一系列固有模式函数(IMF)。在EMD过程中,采用自适应筛分停止标准(SSSC)来控制分解的停止,以避免过度分解和噪声干扰。
  3. 信号重构:将分解得到的IMF进行叠加,得到原始信号的近似表示。在叠加过程中,可以采用加权平均或选用代表性的IMF进行重构。
  4. 稳健性检验:为了检验重构信号的稳健性,REMD方法采用多种稳健性统计检验方法,如Jackknife重抽样、bootstrap重抽样等,以评估重构信号的精度和稳定性。
  5. 结果输出:将重构信号和稳健性检验结果输出,并进行分析和解释。

REMD算法的优势在于其稳健性和自适应性。它能够适应各种复杂信号的特性,有效避免噪声干扰和离群值的影响,得到更为准确和可靠的重构信号。REMD方法在各个领域都有广泛的应用,如工程、生物医学、金融等,用于信号处理、特征提取、时间序列分析等方面。

以上是REMD信号分解算法的基础介绍,如需了解更多信息,可以查阅相关文献或咨询专业人士。

2 出图效果

附出图效果如下:

附视频教程操作:

3 代码获取

【MATLAB】 稳健的经验模式分解 REMD信号分解算法  开源 MATLAB 代码请转:

https://mbd.pub/o/bread/ZJ6bkphu

【MATLAB】5 种高创新性的信号分解算法:

https://mbd.pub/o/bread/ZJ6bkplp

【MATLAB】13 种通用的信号分解算法:

https://mbd.pub/o/bread/mbd-ZJWZmptt

【MATLAB】史上最全的 18 种信号分解算法全家桶:

https://mbd.pub/o/bread/ZJ6bkplq

关于代码有任何疑问,均可关注公众号(Lwcah)后,获取 up 的个人【微信号】,添加微信号后可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~

目录
相关文章
|
7天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
7天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
8天前
|
资源调度 算法
基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。
|
10天前
|
算法
基于SIR模型的疫情发展趋势预测算法matlab仿真
该程序基于SIR模型预测疫情发展趋势,通过MATLAB 2022a版实现病例增长拟合分析,比较疫情防控力度。使用SIR微分方程模型拟合疫情发展过程,优化参数并求解微分方程组以预测易感者(S)、感染者(I)和移除者(R)的数量变化。![]该模型将总人群分为S、I、R三部分,通过解析或数值求解微分方程组预测疫情趋势。
|
10天前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
25天前
|
算法 数据安全/隐私保护
基于LS算法的OFDM+QPSK系统信道估计均衡matlab性能仿真
基于MATLAB 2022a的仿真展示了OFDM+QPSK系统中最小二乘(LS)算法的信道估计与均衡效果。OFDM利用多个低速率子载波提高频谱效率,通过循环前缀克服多径衰落。LS算法依据导频符号估计信道参数,进而设计均衡器以恢复数据符号。核心程序实现了OFDM信号处理流程,包括加性高斯白噪声的加入、保护间隔去除、快速傅立叶变换及信道估计与均衡等步骤,并最终计算误码率,验证了算法的有效性。
43 2
|
25天前
|
算法
基于GA-PSO遗传粒子群混合优化算法的CVRP问题求解matlab仿真
本文介绍了一种基于GA-PSO混合优化算法求解带容量限制的车辆路径问题(CVRP)的方法。在MATLAB2022a环境下运行,通过遗传算法的全局搜索与粒子群算法的局部优化能力互补,高效寻找最优解。程序采用自然数编码策略,通过选择、交叉、变异操作及粒子速度和位置更新,不断迭代直至满足终止条件,旨在最小化总行驶距离的同时满足客户需求和车辆载重限制。
|
29天前
|
机器学习/深度学习 算法 定位技术
MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
MATLAB - 遗传算法(GA)求解旅行商问题(TSP)
31 3
|
15天前
|
数据采集 算法
基于PSO粒子群算法的三角形采集堆轨道优化matlab仿真
该程序利用PSO算法优化5个4*20矩阵中的模块采集轨迹,确保采集的物品数量及元素含量符合要求。在MATLAB2022a上运行,通过迭代寻优,选择最佳模块组合并优化轨道,使采集效率、路径长度及时间等综合指标最优。具体算法实现了粒子状态更新、需求量差值评估及轨迹优化等功能,最终输出最优轨迹及其相关性能指标。
|
30天前
|
算法
基于EM期望最大化算法的GMM模型参数估计matlab仿真
此程序在MATLAB 2022a中实现了基于EM算法的GMM参数估计,用于分析由多个高斯分布组成的混合数据。程序通过迭代优化各高斯组件的权重、均值与协方差,直至收敛,并输出迭代过程的收敛曲线及最终参数估计结果。GMM假设数据由K个高斯分布混合而成,EM算法通过E步计算样本归属概率,M步更新参数,循环迭代直至收敛。