动态内存管理

简介: 动态内存管理

前言

对于数据的存储我们可以静态存储,也可以动态存储,两种方式都有自己特有的好处,这篇文章教我们如何进行动态的数据存储!!!

1. 为什么存在动态内存分配

我们已经掌握的内存开辟方式有:

int val = 20;//在栈空间上开辟四个字节
char arr[10] = {0};//在栈空间上开辟10个字节的连续空间

但是上述的开辟空间的方式有两个特点:

  1. 空间开辟大小是固定的。
  2. 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。

但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编译时开辟空间的方式就不能满足了。

这时候就只能试试动态存开辟了。

2. 动态内存函数的介绍

2.1 malloc和free

C语言提供了一个动态内存开辟的函数:

void* malloc (size_t size);

这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。

  • 如果开辟成功,则返回一个指向开辟好空间的指针。
  • 如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查。
  • 返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。
  • 如果参数 size 为0,malloc的行为是标准是未定义的,取决于编译器。

C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收的,函数原型如下:

void free (void* ptr);

free函数用来释放动态开辟的内存。

  • 如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。
  • 如果参数 ptr 是NULL指针,则函数什么事都不做。

malloc和free都声明在 stdlib.h 头文件中。

举个例子:

#include <stdio.h>
int main()
{
  //代码1
  int num = 0;
  scanf("%d", &num);
  int arr[num] = { 0 };
  //代码2
  int* ptr = NULL;
  ptr = (int*)malloc(num * sizeof(int));
  if (NULL != ptr)//判断ptr指针是否为空
  {
    int i = 0;
    for (i = 0; i < num; i++)
    {
      *(ptr + i) = 0;
    }
  }
  free(ptr);//释放ptr所指向的动态内存
  ptr = NULL;//将ptr置为空指针
  return 0;
}

2.2 calloc

C语言还提供了一个函数叫 calloc , calloc 函数也用来动态内存分配。原型如下:

void* calloc (size_t num, size_t size);
  • 函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为0。
  • 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。

举个例子:

#include <stdio.h>
#include <stdlib.h>
int main()
{
  int* p = (int*)calloc(10, sizeof(int));
  if (NULL != p)
  {
    //使用空间
  }
  free(p);
  p = NULL;
  return 0;
}

所以如何我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务。

2.3 realloc

  1. realloc函数的出现让动态内存管理更加灵活。
  2. 有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时候内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小的调整。

函数原型如下:

void* realloc (void* ptr, size_t size);
  • ptr 是要调整的内存地址
  • size 调整之后新大小
  • 返回值为调整之后的内存起始位置。
  • 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到 新 的空间。
  • realloc在调整内存空间的是存在两种情况:
  1. 原有空间之后有足够大的空间
  2. 原有空间之后没有足够大的空间

情况1:

当是情况1 的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。

情况2:

当是情况2 的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。

由于上述的两种情况,realloc函数的使用就要注意一些。

举个例子:

#include <stdio.h>
int main()
{
  int* ptr = (int*)malloc(100);
  if (ptr != NULL)
  {
    //业务处理
  }
  else
  {
    exit(EXIT_FAILURE);
  }
  //扩展容量
  //代码1
  ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?)
  //代码2
  int* p = NULL;
  p = realloc(ptr, 1000);
  if (p != NULL)
  {
    ptr = p;
  }
  //业务处理
  free(ptr);
  return 0;
}

3. 常见的动态内存错误

3.1 对NULL指针的解引用操作

void test()
{
  int* p = (int*)malloc(INT_MAX / 4);
  *p = 20;//如果p的值是NULL,就会有问题
  free(p);
}

3.2 对动态开辟空间的越界访问

void test()
{
  int i = 0;
  int* p = (int*)malloc(10 * sizeof(int));
  if (NULL == p)
  {
    exit(EXIT_FAILURE);
  }
  for (i = 0; i <= 10; i++)
  {
    *(p + i) = i;//当i是10的时候越界访问
  }
  free(p);
}

3.3 对非动态开辟内存使用free释放

void test()
{
    int a = 10;
    int *p = &a;
    free(p);//error——不能对非动态内存进行释放
}

3.4 使用free释放一块动态开辟内存的一部分

void test()
{
    int *p = (int *)malloc(100);
    p++;
    free(p);//p不再指向动态内存的起始位置
}

3.5 对同一块动态内存多次释放

void test()
{
    int *p = (int *)malloc(100);
    free(p);
    free(p);//重复释放
}

3.6 动态开辟内存忘记释放(内存泄漏)

void test()
{
    int *p = (int *)malloc(100);
    if(NULL != p)
    {
        *p = 20;
    }
}
int main()
{
    test();
    while(1);
}

忘记释放不再使用的动态开辟的空间会造成内存泄漏。

切记:

动态开辟的空间一定要释放,并且正确释放 。

4. 几个经典的笔试题

4.1 题目1:

void GetMemory(char* p)
{
  p = (char*)malloc(100);
}
void Test(void)
{
  char* str = NULL;
  GetMemory(str);
  strcpy(str, "hello world");
  printf(str);
}
int main()
{
  Test();
  return 0;
}

请问运行Test 函数会有什么样的结果?

这个程序会挂掉。问题的原因在于,GetMemory 函数采用的是值传递,实参 str 是一个字符指针变量,形参同样用字符指针变量 p 来接收,形参是实参的一份临时拷贝,此时 p 和 str 是各自独立的两个指针变量,但它们都是空指针,此时在函数内部让 p 重新指向新开辟出来的空间,此时 p 就不再是空指针了,但是这一切和 str 有什么关系呢?p 和 str 唯一的关系就是,p 的值最初是从 str 拷贝过期的,从这之后 p 和 str 再无瓜葛,当GetMemory 函数结束的时候 p 会被释放掉,接下来执行 strcpy ,但此时此刻的 str 依然是一个空指针,NULL 就表示 0 00 ,也就是是地址为0 00的内存空间,这块空间是不允许普通程序去访问的,因此在执行 strcpy 的时候程序会报错,这是上面代码存在的一个问题,还有一个问题就是:内存泄漏,GetMemory 函数中动态申请的空间没有释放,之后想释放都释放不掉。

正确写法:

void GetMemory(char** p)//形参用二级指针接收,此时p里面存的是str的地址
{
  *p = (char*)malloc(100);//*p得到str,让str指向新开辟的空间
}
void Test(void)
{
  char* str = NULL;
  GetMemory(&str);//址传递
  strcpy(str, "hello world");
  printf(str);
  free(str);
  str = NULL;
}
int main()
{
  Test();
  return 0;
}

4.2 题目2:

char* GetMemory(void)
{
  char p[] = "hello world";
  return p;
}
void Test(void)
{
  char* str = NULL;
  str = GetMemory();
  printf(str);
}
int main()
{
  Test();
  return 0;
}

请问运行Test 函数会有什么样的结果?

上面代码打印出来的是:烫烫烫烫烫烫烫烫圉7。这里问题的关键在于,数组p是一个局部变量,在出 GetMemory 函数的时候,数组 p 的内存空间就被销毁了,还给了操作系统,虽然把这个数组首元素的地址返了回去,但此时再通过地址去访问这一块空间,就成了非法访问。这种问题通常也被叫做返回栈空间地址的问题

正确写法:

 

char* GetMemory(void)
{
  char* p = "hello world";
  return p;
}
void Test(void)
{
  char* str = NULL;
  str = GetMemory();
  printf(str);
}
int main()
{
  Test();
  return 0;
}

"hello world" 作为字符串常量,存储在静态区,不会随着 GetMemory 执行结束而销毁。当然这了还可以在数组 p 前面加上 static 来修饰。

4.3 题目3:

void GetMemory(char** p, int num)
{
  *p = (char*)malloc(num);
}
void Test(void)
{
  char* str = NULL;
  GetMemory(&str, 100);
  strcpy(str, "hello");
  printf(str);
}
int main()
{
  Test();
  return 0;
}

请问运行Test 函数会有什么样的结果?

这段代码可以成功打印出hello,但是仔细观察就能发现,这段代码里面之见 malloc 却不见 free 这就是典型的内存泄漏。

正确写法:

void GetMemory(char** p, int num)
{
  *p = (char*)malloc(num);
}
void Test(void)
{
  char* str = NULL;
  GetMemory(&str, 100);
  strcpy(str, "hello");
  printf(str);
  free(str);
  str = NULL;
}
int main()
{
  Test();
  return 0;
}

4.4 题目4:

void Test(void)
{
  char* str = (char*)malloc(100);
  strcpy(str, "hello");
  free(str);
  if (str != NULL)
  {
    strcpy(str, "world");
    printf(str);
  }
}
int main()
{
  Test();
  return 0;
}

请问运行Test 函数会有什么样的结果?

这段代码可以成功打印出world。但上面这段代码是有问题的,因为我们已经把 str 给 free 掉了,意思也就是,已经把这块空间归还给操作系统了,这块空间的操作权限属于操作系统。在 free 完后没有把 str 置为空,所以 str 还是指向那块空间,此时的 str 已经变成了一个野指针,后面一些列涉及 str 的操作都属于非法访问。正确的做法是在 free 的后面,把指针置为空。

 

5. C/C++程序的内存开辟

C/C++程序内存分配的几个区域:

1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结

束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是

分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返

回地址等。

2. 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分

配方式类似于链表。

3. 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。

4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码。

有了这幅图,我们就可以更好的理解在《C语言初识》中讲的static关键字修饰局部变量的例子了。

  • 实际上普通的局部变量是在栈区分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁。
  • 但是被static修饰的变量存放在数据段(静态区),数据段的特点是在上面创建的变量,直到程序结束才销毁
  • 所以生命周期变长。

总结:

 今天的分享到这里就结束啦。今天我们学习了动态内存分配的有关知识,了解了和动态内存分配有关的四个函数 malloc、free、calloc、realloc的用法,通过许多例子,我们发现在使用完动态空间后,一定要记得把它归还给操作系统,不然会造成内存泄漏,归还完了之后,还需把指针置为空,否则会造成非法访问。我们还列举了许多有关动态内存分配的常见错误,大家要牢记这些错误,在使用的时候注意避免。

相关文章
|
2月前
|
编译器 程序员 C语言
动态内存管理(超详细!)
动态内存管理(超详细!)
27 2
|
3月前
|
存储 安全 算法
c++动态内存管理(一)
C++ 动态内存管理 在 C++ 中,动态内存管理是一个核心概念,它允许在运行时分配和释放内存。以下是 C++ 动态内存管理需要掌握的关键知识点:
117 0
|
3月前
|
安全 C++ 开发者
c++动态内存管理(二)
c++动态内存管理(二)
91 0
|
5月前
|
编译器
动态内存管理(1)
动态内存管理(1)
36 0
|
5月前
|
程序员 C语言 C++
动态内存管理-2
动态内存管理
21 0
|
6月前
|
编译器 文件存储 数据库
Day_17> 动态内存管理
Day_17> 动态内存管理
|
6月前
|
C语言
动态内存管理(上)
动态内存管理(上)
24 0
|
8月前
|
编译器 C++
动态内存管理详解
动态内存管理详解
|
9月前
|
编译器 C语言
详解动态内存管理(一)
详解动态内存管理
55 0
详解动态内存管理(一)
|
9月前
|
程序员 编译器 C++
【C】动态内存管理详解
C/C++程序内存分配的几个区域: 1.栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。 2.堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分配方式类似于链表。 3.数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。 4.代码段:存放函数体(类成员函数和全局函数)的二进制代码。
【C】动态内存管理详解