前言
对于数据的存储我们可以静态存储,也可以动态存储,两种方式都有自己特有的好处,这篇文章教我们如何进行动态的数据存储!!!
1. 为什么存在动态内存分配
我们已经掌握的内存开辟方式有:
int val = 20;//在栈空间上开辟四个字节 char arr[10] = {0};//在栈空间上开辟10个字节的连续空间
但是上述的开辟空间的方式有两个特点:
- 空间开辟大小是固定的。
- 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。
但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编译时开辟空间的方式就不能满足了。
这时候就只能试试动态存开辟了。
2. 动态内存函数的介绍
2.1 malloc和free
C语言提供了一个动态内存开辟的函数:
void* malloc (size_t size);
这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。
- 如果开辟成功,则返回一个指向开辟好空间的指针。
- 如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查。
- 返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定。
- 如果参数 size 为0,malloc的行为是标准是未定义的,取决于编译器。
C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收的,函数原型如下:
void free (void* ptr);
free函数用来释放动态开辟的内存。
- 如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。
- 如果参数 ptr 是NULL指针,则函数什么事都不做。
malloc和free都声明在 stdlib.h 头文件中。
举个例子:
#include <stdio.h> int main() { //代码1 int num = 0; scanf("%d", &num); int arr[num] = { 0 }; //代码2 int* ptr = NULL; ptr = (int*)malloc(num * sizeof(int)); if (NULL != ptr)//判断ptr指针是否为空 { int i = 0; for (i = 0; i < num; i++) { *(ptr + i) = 0; } } free(ptr);//释放ptr所指向的动态内存 ptr = NULL;//将ptr置为空指针 return 0; }
2.2 calloc
C语言还提供了一个函数叫 calloc , calloc 函数也用来动态内存分配。原型如下:
void* calloc (size_t num, size_t size);
- 函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为0。
- 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。
举个例子:
#include <stdio.h> #include <stdlib.h> int main() { int* p = (int*)calloc(10, sizeof(int)); if (NULL != p) { //使用空间 } free(p); p = NULL; return 0; }
所以如何我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务。
2.3 realloc
- realloc函数的出现让动态内存管理更加灵活。
- 有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时候内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小的调整。
函数原型如下:
void* realloc (void* ptr, size_t size);
- ptr 是要调整的内存地址
- size 调整之后新大小
- 返回值为调整之后的内存起始位置。
- 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到 新 的空间。
- realloc在调整内存空间的是存在两种情况:
- 原有空间之后有足够大的空间
- 原有空间之后没有足够大的空间
情况1:
当是情况1 的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。
情况2:
当是情况2 的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。
由于上述的两种情况,realloc函数的使用就要注意一些。
举个例子:
#include <stdio.h> int main() { int* ptr = (int*)malloc(100); if (ptr != NULL) { //业务处理 } else { exit(EXIT_FAILURE); } //扩展容量 //代码1 ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?) //代码2 int* p = NULL; p = realloc(ptr, 1000); if (p != NULL) { ptr = p; } //业务处理 free(ptr); return 0; }
3. 常见的动态内存错误
3.1 对NULL指针的解引用操作
void test() { int* p = (int*)malloc(INT_MAX / 4); *p = 20;//如果p的值是NULL,就会有问题 free(p); }
3.2 对动态开辟空间的越界访问
void test() { int i = 0; int* p = (int*)malloc(10 * sizeof(int)); if (NULL == p) { exit(EXIT_FAILURE); } for (i = 0; i <= 10; i++) { *(p + i) = i;//当i是10的时候越界访问 } free(p); }
3.3 对非动态开辟内存使用free释放
void test() { int a = 10; int *p = &a; free(p);//error——不能对非动态内存进行释放 }
3.4 使用free释放一块动态开辟内存的一部分
void test() { int *p = (int *)malloc(100); p++; free(p);//p不再指向动态内存的起始位置 }
3.5 对同一块动态内存多次释放
void test() { int *p = (int *)malloc(100); free(p); free(p);//重复释放 }
3.6 动态开辟内存忘记释放(内存泄漏)
void test() { int *p = (int *)malloc(100); if(NULL != p) { *p = 20; } } int main() { test(); while(1); }
忘记释放不再使用的动态开辟的空间会造成内存泄漏。
切记:
动态开辟的空间一定要释放,并且正确释放 。
4. 几个经典的笔试题
4.1 题目1:
void GetMemory(char* p) { p = (char*)malloc(100); } void Test(void) { char* str = NULL; GetMemory(str); strcpy(str, "hello world"); printf(str); } int main() { Test(); return 0; }
请问运行Test 函数会有什么样的结果?
这个程序会挂掉。问题的原因在于,GetMemory 函数采用的是值传递,实参 str 是一个字符指针变量,形参同样用字符指针变量 p 来接收,形参是实参的一份临时拷贝,此时 p 和 str 是各自独立的两个指针变量,但它们都是空指针,此时在函数内部让 p 重新指向新开辟出来的空间,此时 p 就不再是空指针了,但是这一切和 str 有什么关系呢?p 和 str 唯一的关系就是,p 的值最初是从 str 拷贝过期的,从这之后 p 和 str 再无瓜葛,当GetMemory 函数结束的时候 p 会被释放掉,接下来执行 strcpy ,但此时此刻的 str 依然是一个空指针,NULL 就表示 0 00 ,也就是是地址为0 00的内存空间,这块空间是不允许普通程序去访问的,因此在执行 strcpy 的时候程序会报错,这是上面代码存在的一个问题,还有一个问题就是:内存泄漏,GetMemory 函数中动态申请的空间没有释放,之后想释放都释放不掉。
正确写法:
void GetMemory(char** p)//形参用二级指针接收,此时p里面存的是str的地址 { *p = (char*)malloc(100);//*p得到str,让str指向新开辟的空间 } void Test(void) { char* str = NULL; GetMemory(&str);//址传递 strcpy(str, "hello world"); printf(str); free(str); str = NULL; } int main() { Test(); return 0; }
4.2 题目2:
char* GetMemory(void) { char p[] = "hello world"; return p; } void Test(void) { char* str = NULL; str = GetMemory(); printf(str); } int main() { Test(); return 0; }
请问运行Test 函数会有什么样的结果?
上面代码打印出来的是:烫烫烫烫烫烫烫烫圉7。这里问题的关键在于,数组p是一个局部变量,在出 GetMemory 函数的时候,数组 p 的内存空间就被销毁了,还给了操作系统,虽然把这个数组首元素的地址返了回去,但此时再通过地址去访问这一块空间,就成了非法访问。这种问题通常也被叫做返回栈空间地址的问题
正确写法:
char* GetMemory(void) { char* p = "hello world"; return p; } void Test(void) { char* str = NULL; str = GetMemory(); printf(str); } int main() { Test(); return 0; }
"hello world"
作为字符串常量,存储在静态区,不会随着 GetMemory
执行结束而销毁。当然这了还可以在数组 p
前面加上 static
来修饰。
4.3 题目3:
void GetMemory(char** p, int num) { *p = (char*)malloc(num); } void Test(void) { char* str = NULL; GetMemory(&str, 100); strcpy(str, "hello"); printf(str); } int main() { Test(); return 0; }
请问运行Test 函数会有什么样的结果?
这段代码可以成功打印出hello,但是仔细观察就能发现,这段代码里面之见 malloc
却不见 free
这就是典型的内存泄漏。
正确写法:
void GetMemory(char** p, int num) { *p = (char*)malloc(num); } void Test(void) { char* str = NULL; GetMemory(&str, 100); strcpy(str, "hello"); printf(str); free(str); str = NULL; } int main() { Test(); return 0; }
4.4 题目4:
void Test(void) { char* str = (char*)malloc(100); strcpy(str, "hello"); free(str); if (str != NULL) { strcpy(str, "world"); printf(str); } } int main() { Test(); return 0; }
请问运行Test 函数会有什么样的结果?
这段代码可以成功打印出world。但上面这段代码是有问题的,因为我们已经把 str 给 free 掉了,意思也就是,已经把这块空间归还给操作系统了,这块空间的操作权限属于操作系统。在 free 完后没有把 str 置为空,所以 str 还是指向那块空间,此时的 str 已经变成了一个野指针,后面一些列涉及 str 的操作都属于非法访问。正确的做法是在 free 的后面,把指针置为空。
5. C/C++程序的内存开辟
C/C++程序内存分配的几个区域:
1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结
束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是
分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返
回地址等。
2. 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分
配方式类似于链表。
3. 数据段(静态区)(static)存放全局变量、静态数据。程序结束后由系统释放。
4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码。
有了这幅图,我们就可以更好的理解在《C语言初识》中讲的static关键字修饰局部变量的例子了。
- 实际上普通的局部变量是在栈区分配空间的,栈区的特点是在上面创建的变量出了作用域就销毁。
- 但是被static修饰的变量存放在数据段(静态区),数据段的特点是在上面创建的变量,直到程序结束才销毁
- 所以生命周期变长。
总结:
今天的分享到这里就结束啦。今天我们学习了动态内存分配的有关知识,了解了和动态内存分配有关的四个函数 malloc、free、calloc、realloc的用法,通过许多例子,我们发现在使用完动态空间后,一定要记得把它归还给操作系统,不然会造成内存泄漏,归还完了之后,还需把指针置为空,否则会造成非法访问。我们还列举了许多有关动态内存分配的常见错误,大家要牢记这些错误,在使用的时候注意避免。