面向 JavaScript 初学者的二叉搜索树算法

简介: 面向 JavaScript 初学者的二叉搜索树算法

在本文中,我将尽力解释一些您在编码面试之前应该学习的核心算法。

什么是二叉搜索树 (BST)?

在编码面试中很常见,BST 是一种树状数据结构,顶部有一个根。它们是存储数值的好方法,因为它们的有序性质允许快速搜索和查找。

与普通树相比,BST 具有以下特性:

  • 每个左孩子的值都比它的父母小
  • 每个右孩子的值都比它的父母大
  • 每个节点可以包含 0 到 2 个子节点。

下图应该更清楚地说明事情。

二叉树节点的定义

image.png

我们通常在 Javascript 中定义一个二叉树节点,函数如下:

 function TreeNode(val, left, right) {
     this.val = val
     this.left = left
     this.right = right
 }

二叉树基本遍历(中序、后序、前序)

首先要知道如何遍历 BST 的每个节点。这允许我们在 BST 的所有节点上执行一个功能。例如,如果我们想x在 BST 中找到一个值,我们就需要节点。


有三种主要方法可以做到这一点。幸运的是,他们有共同的主题。

中序遍历

递归算法是开始使用二叉树中序遍历的最简单方法。思路如下:

  • 如果节点为空,则什么都不做——否则,递归调用节点左子节点上的函数。
  • 然后,遍历完所有左子节点后,对节点进行一些操作。我们当前的节点保证是最左边的节点。
  • 最后,调用 node.right 上的函数。

Inorder 算法从左、中、右遍历树节点。

const inorder = (root) => {
    const nodes = []
    if (root) {
        inorder(root.left)
        nodes.push(root.val)
        inorder(root.right)
    }
    return nodes
}
// 对于我们的示例树,将返回 [1,2,3,4,5,6]

后序遍历

递归算法是开始后序遍历的最简单方法。

  • 如果节点为空,则什么都不做——否则,递归调用节点左子节点上的函数。
  • 当没有更多的左孩子时,调用 node.right 上的函数。
  • 最后,在节点上做一些操作。

后序遍历从左、右、中访问树节点。

const postorder = (root) => {
    const nodes = []
    if (root) {
        postorder(root.left)
        postorder(root.right)
        nodes.push(root.val)
    }
    return nodes
}
// 对于我们的示例树,将返回 [1,3,2,6,5,4]

前序遍历

递归算法是开始前序遍历的最简单方法。

  • 如果节点为空,则什么都不做——否则,在节点上做一些操作。
  • 遍历节点的左子节点并重复。
  • 遍历到节点的右孩子并重复。

后序遍历从中、左、右访问树节点。

const preorder = (root) => {
    const nodes = []
    if (root) {
        nodes.push(root.val)
        preorder(root.left)
        preorder(root.right)
    }
    return nodes
}
// 对于我们的示例树,将返回 [4,2,1,3,5,6]

什么是有效的二叉搜索树?

有效的二叉搜索树 (BST) 具有所有值小于父节点的左子节点,以及值大于父节点的所有右子节点。

要验证一棵树是否是有效的二叉搜索树:

  • 定义当前节点可以具有的最小值和最大值
  • 如果节点的值不在这些范围内,则返回 false
  • 递归验证节点的左孩子,最大边界设置为节点的值
  • 递归验证节点的右孩子,最小边界设置为节点的值
const isValidBST = (root) => {
    const helper = (node, min, max) => {
        if (!node) return true
        if (node.val <= min || node.val >= max) return false
        return helper(node.left, min, node.val) && helper(node.right, node.val, max)
    }
    return helper(root, Number.MIN_SAFE_INTEGER, Number.MAX_SAFE_INTEGER)
}

如何找到二叉树最大深度

在这里,算法试图找到我们 BST 的高度/深度。换句话说,我们正在查看 BST 包含多少个“级别”。

  • 如果节点为空,我们返回 0 因为它没有添加任何深度
  • 否则,我们将 + 1 添加到我们当前的深度(我们遍历了一层)
  • 递归计算节点子节点的深度并返回node.left和node.right之间的最大和
const maxDepth = function(root) {
    const calc = (node) => {
        if (!node) return 0
        return Math.max(1 + calc(node.left), 1 + calc(node.right))
    }
    return calc(root)
};

如何找到两个树节点之间的最小公共祖先

让我们提高难度。我们如何在我们的二叉树中找到两个树节点之间的共同祖先?让我们看一些例子。

image.png

在这棵树中,3和1的最低共同祖先是2。3和2的LCA是2。6和1和6的LCA是4。

看到这里的模式了吗?两个树节点之间的 LCA 要么是节点本身之一(3 和 2 的情况),要么是父节点,其中第一个子节点位于其左子树中的某处,而第二个子节点位于其右子树中的某处。

寻找两个树节点 p 和 q 之间的最低共同祖先(LCA)的算法如下:

  • 验证是否在左子树或右子树中找到 p 或 q
  • 然后,验证当前节点是 p 还是 q
  • 如果在左子树或右子树中找到 p 或 q 之一,并且 p 或 q 之一是节点本身,我们就找到了 LCA
  • 如果在左子树或右子树中都找到了 p 和 q,我们就找到了 LCA
const lowestCommonAncestor = function(root, p, q) {
    let lca = null
    const isCommonPath = (node) => {
        if (!node) return false
        var isLeft = isCommonPath(node.left)
        var isRight = isCommonPath(node.right)
        var isMid = node == p || node == q
        if (isMid && isLeft || isMid && isRight || isLeft && isRight) {
            lca = node
        }
        return isLeft || isRight || isMid
    }
    isCommonPath(root)
    return lca
};

😊 结尾想说的

到此,我们已经学会了如何遍历、验证和计算 BST 的深度。

这些算法经常在编码面试中被问到。在练习更高级的 BST 应用程序之前了解它们很重要,比如找到两个节点的 LCA。我希望你喜欢这篇文章。如果你喜欢它,也分享给你的朋友。有未提及的内容或想分享您的想法请随时在下面发表评论,我会尽快回复您。😉


目录
相关文章
|
6月前
|
算法 JavaScript 前端开发
在JavaScript中实现基本的碰撞检测算法,我们通常会用到矩形碰撞检测,也就是AABB(Axis-Aligned Bounding Box)碰撞检测
【6月更文挑战第16天】JavaScript中的基本碰撞检测涉及AABB(轴对齐边界框)方法,常用于2D游戏。`Rectangle`类定义了矩形的属性,并包含一个`collidesWith`方法,通过比较边界来检测碰撞。若两矩形无重叠部分,四个条件(关于边界相对位置)均需满足。此基础算法适用于简单场景,复杂情况可能需采用更高级的检测技术或物理引擎库。
107 6
|
4月前
|
JavaScript 算法 前端开发
JS算法必备之String常用操作方法
这篇文章详细介绍了JavaScript中字符串的基本操作,包括创建字符串、访问特定字符、字符串的拼接、位置查找、大小写转换、模式匹配、以及字符串的迭代和格式化等方法。
JS算法必备之String常用操作方法
|
4月前
|
JavaScript 算法 前端开发
JS算法必备之Array常用操作方法
这篇文章详细介绍了JavaScript中数组的创建、检测、转换、排序、操作方法以及迭代方法等,提供了数组操作的全面指南。
JS算法必备之Array常用操作方法
|
3月前
|
存储 算法 C#
C#二叉搜索树算法
C#二叉搜索树算法
|
4月前
|
JavaScript 算法 前端开发
"揭秘Vue.js的高效渲染秘诀:深度解析Diff算法如何让前端开发快人一步"
【8月更文挑战第20天】Vue.js是一款备受欢迎的前端框架,以其声明式的响应式数据绑定和组件化开发著称。在Vue中,Diff算法是核心之一,它高效计算虚拟DOM更新时所需的最小实际DOM变更,确保界面快速准确更新。算法通过比较新旧虚拟DOM树的同层级节点,递归检查子节点,并利用`key`属性优化列表更新。虽然存在局限性,如难以处理跨层级节点移动,但Diff算法仍是Vue高效更新机制的关键,帮助开发者构建高性能Web应用。
80 1
|
5月前
|
数据采集 算法 JavaScript
揭开JavaScript字符串搜索的秘密:indexOf、includes与KMP算法
JavaScript字符串搜索涵盖`indexOf`、`includes`及KMP算法。`indexOf`返回子字符串位置,`includes`检查是否包含子字符串。KMP是高效的搜索算法,尤其适合长模式匹配。示例展示了如何在数据采集(如网页爬虫)中使用这些方法,结合代理IP进行安全搜索。代码示例中,搜索百度新闻结果并检测是否含有特定字符串。学习这些技术能提升编程效率和性能。
136 1
揭开JavaScript字符串搜索的秘密:indexOf、includes与KMP算法
|
5月前
|
算法 JavaScript
JS 【详解】树的遍历(含深度优先遍历和广度优先遍历的算法实现)
JS 【详解】树的遍历(含深度优先遍历和广度优先遍历的算法实现)
76 0
JS 【详解】树的遍历(含深度优先遍历和广度优先遍历的算法实现)
|
6月前
|
JavaScript 前端开发 搜索推荐
JavaScript常见的排序算法详解
JavaScript常见的排序算法详解
35 1
|
5月前
|
算法 JavaScript
JS 【详解】二叉树(含二叉树的前、中、后序遍历技巧和算法实现)
JS 【详解】二叉树(含二叉树的前、中、后序遍历技巧和算法实现)
53 0
|
5月前
|
算法 JavaScript
JS 【算法】二分查找
JS 【算法】二分查找
40 0

热门文章

最新文章