本文涉及的基础知识点
题目
得到 K 个半回文串的最少修改次数
给你一个字符串 s 和一个整数 k ,请你将 s 分成 k 个 子字符串 ,使得每个 子字符串 变成 半回文串 需要修改的字符数目最少。
请你返回一个整数,表示需要修改的 最少 字符数目。
注意:
如果一个字符串从左往右和从右往左读是一样的,那么它是一个 回文串 。
如果长度为 len 的字符串存在一个满足 1 <= d < len 的正整数 d ,len % d == 0 成立且所有对 d 做除法余数相同的下标对应的字符连起来得到的字符串都是 回文串 ,那么我们说这个字符串是 半回文串 。比方说 “aa” ,“aba” ,“adbgad” 和 “abab” 都是 半回文串 ,而 “a” ,“ab” 和 “abca” 不是。
子字符串 指的是一个字符串中一段连续的字符序列。
示例 1:
输入:s = “abcac”, k = 2
输出:1
解释:我们可以将 s 分成子字符串 “ab” 和 “cac” 。子字符串 “cac” 已经是半回文串。如果我们将 “ab” 变成 “aa” ,它也会变成一个 d = 1 的半回文串。
该方案是将 s 分成 2 个子字符串的前提下,得到 2 个半回文子字符串需要的最少修改次数。所以答案为 1 。
示例 2:
输入:s = “abcdef”, k = 2
输出:2
解释:我们可以将 s 分成子字符串 “abc” 和 “def” 。子字符串 “abc” 和 “def” 都需要修改一个字符得到半回文串,所以我们总共需要 2 次字符修改使所有子字符串变成半回文串。
该方案是将 s 分成 2 个子字符串的前提下,得到 2 个半回文子字符串需要的最少修改次数。所以答案为 2 。
示例 3:
输入:s = “aabbaa”, k = 3
输出:0
解释:我们可以将 s 分成子字符串 “aa” ,“bb” 和 “aa” 。
字符串 “aa” 和 “bb” 都已经是半回文串了。所以答案为 0 。
参数范围:
2 <= s.length <= 200
1 <= k <= s.length / 2
s 只包含小写英文字母。
分析
第一轮:vector<vector> m_aDCenger[2][101]; 四维数组:第一维,0表示奇数长度,1表示偶数长度。 第二维:d。第三维:中心。第四维半长长度。值记录变成:半回文需要改变的次数。
第二轮:int m_vNeedNum[200][201] 记录s[left,r)变成半回文需要改变的次数。
第三轮:三层循环,第一层循环:枚举k,第二层循环枚举s[0,j]。第三轮循环枚举m,[0,m]和(m,j]。
三轮时间复杂度都是:O(nnn);
核心代码
class Solution { public: int minimumChanges(string s, int k) { m_c = s.length(); Init(s); Init2(s); vector pre(m_c);//pre[j]将s[0,j]拆分成i-1个子字符串,这些子串全部半回文的需要改变的字符数 for (int j = 0; j < m_c; j++) { pre[j] = m_vNeedNum[0][j + 1]; } for (int i = 2; i <= k; i++) { vector dp(m_c); for (int j = i - 1; j < m_c; j++) {//拆分成[0,m]和(m,j]([m+1,j+1)),前者i-1个子串,后者一个子串 int iMin = INT_MAX; for (int m = max(0,i-2); m < j; m++) { const int cur = pre[m] + m_vNeedNum[m + 1][j + 1]; iMin = min(iMin, cur); } dp[j] = iMin; } pre.swap(dp); } return pre.back(); } void Init(std::string& s) { for(int i = 0 ; i < 2 ; i++ ) for (int j = 0; j <= m_c / 2; j++) { m_aDCenger[i][j].assign(m_c+1, vector((m_c+1)/2+1)); } for (int d = 1; d <= m_c/2; d++) { for (int center = 0; center < m_c; center++) { int halfLen = 1; while ((center + d* (halfLen-1) < m_c) && (center - d* (halfLen - 1) >= 0) ) { m_aDCenger[1][d][center][halfLen] = m_aDCenger[1][d][center][halfLen - 1] +(s[center + d * (halfLen - 1)] != s[center - d * (halfLen - 1)]) ; halfLen++; } } for (int center = 0; center < m_c; center++) {//偶数半回文 int halfLen = 1; while ((center + d * halfLen < m_c) && (center - d * (halfLen - 1) >= 0) ) { m_aDCenger[0][d][center][halfLen] = m_aDCenger[0][d][center][halfLen - 1] + (s[center + d * halfLen] != s[center - d * (halfLen - 1)]); halfLen++; } } } } void Init2(std::string& s) { memset(m_vNeedNum, sizeof(m_vNeedNum), 0); for (int left = 0; left < m_c; left++) { for (int r = left + 1; r <= m_c; r++) { const int subLen = r - left; int iNeed = 1000*1000; for (int d = 1; (d * d <= subLen)&&(subLen >1); d++) { if (0 != subLen % d) { continue; } { const int iCurNeed = DoLeftRightD(left, r, d); iNeed = min(iNeed, iCurNeed); } if(d >1 ) { const int iCurNeed = DoLeftRightD(left, r, subLen/d); iNeed = min(iNeed, iCurNeed); } } m_vNeedNum[left][r] = iNeed; } } } int DoLeftRightD(int left,int r,int d) { const int subLen = r - left; const int len = subLen / d; const auto& arr = m_aDCenger[len % 2]; const int midIndex = (len-1)/2; int iCurNeed = 0; for (int begin = 0; begin < d; begin++) { const int center = left + begin + midIndex * d; iCurNeed += arr[d][center][(len + 1) / 2]; } return iCurNeed; } int m_c; vector<vector> m_aDCenger[2][101]; int m_vNeedNum[200][201]; };
测试用例
template void Assert(const vector& v1, const vector& v2) { if (v1.size() != v2.size()) { assert(false); return; } for (int i = 0; i < v1.size(); i++) { assert(v1[i] == v2[i]); } } template void Assert(const T& t1, const T& t2) { assert(t1 == t2); } int main() { //string s = “bbacccbbaabbddddddddddddddddddddddddddddddddddddddddddddbbacccbbaabbdddddddddddddddddddddddddddddddddddddddddddddbbbacccbbaabbddddddddddddddddddddbbacccbbaabbdddddddddddddddddddddddddddddddddddddddddd”; string s = “abcac”; int k = 2; Solution slu; auto res = slu.minimumChanges(s,k); Assert(1, res);
//CConsole::Out(res);
}
小幅改进
空间复杂度降为O(nn)。一,预处理的时候,利用当前d,更新m_vLeftRightToNeedChange。更新完旧d的信息就不需要了。二,不需要分奇数长度和偶数长度回文。长度本身可以分奇偶了。
Init2共3层循环,时间复杂度是:O(nn),第三层第四层,时间复杂度共O(n)。第三层循环的时间复杂度是: n/d,第四层时间复杂度是d。
新代码
class Solution { public: int minimumChanges(string s, int k) { m_c = s.length(); m_vLeftRightToNeedChange.assign(m_c, vector<int>(m_c, m_iNotMay)); for (int d = 1; d <= m_c / 2; d++) { Init(s,d); Init2(s,d); } vector<int> pre(m_c);//pre[j]将s[0,j]拆分成i-1个子字符串,这些子串全部半回文的需要改变的字符数 for (int j = 0; j < m_c; j++) { pre[j] = m_vLeftRightToNeedChange[0][j]; } for (int i = 2; i <= k; i++) { vector<int> dp(m_c); for (int j = i - 1; j < m_c; j++) {//拆分成[0,m]和(m,j]([m+1,j])),前者i-1个子串,后者一个子串 int iMin = INT_MAX; for (int m = max(0,i-2); m < j; m++) { const int cur = pre[m] + m_vLeftRightToNeedChange[m + 1][j]; iMin = min(iMin, cur); } dp[j] = iMin; } pre.swap(dp); } return pre.back(); } void DoCenter(int center, bool bEven,int d,const string& s) { int left = center, r = left + d*bEven; if (r >= m_c) { return; } m_vDLeftRightToNeedChange[left][r] = (s[left] != s[r]); left -= d; r += d; while ((r < m_c) && (left >= 0 )) { m_vDLeftRightToNeedChange[left][r] = m_vDLeftRightToNeedChange[left + d][r - d] + (s[left] != s[r]); left -= d; r += d; } } void Init(std::string& s,int d ) { m_vDLeftRightToNeedChange.assign(m_c, vector<int>(m_c, m_iNotMay)); for (int center = 0; center < m_c; center++) { DoCenter(center, true, d,s); DoCenter(center, false, d,s); } } void Init2(std::string& s, int d) { for (int left = 0; left < m_c; left++) { for (int iSubLen = 2; left+ iSubLen*d <= m_c ; iSubLen++) { const int r = left + iSubLen * d; int iNeedChange = 0; for (int j = 0; j < d; j++) { iNeedChange += m_vDLeftRightToNeedChange[left+j][r - d+j]; } m_vLeftRightToNeedChange[left][r - 1] = min(m_vLeftRightToNeedChange[left][r - 1],iNeedChange); } } } const int m_iNotMay = 1000 * 1000; int m_c; vector<vector<int>> m_vDLeftRightToNeedChange;//m_vDLeftRightToNeedChange[left][r],表示当前d,str[left,left+d....r]是回文的最少次数 vector<vector<int>> m_vLeftRightToNeedChange;//m_vLeftRightToNeedChange[left][r]表示s[left,r]变成半回文的最少改变次数 };
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关下载
想高屋建瓴的学习算法,请下载《闻缺陷则喜算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
鄙人想对大家说的话 |
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
墨家名称的来源:有所得以墨记之。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17