大数据处理平台的架构演进:从批处理到实时流处理

简介: 大数据处理平台的架构演进:从批处理到实时流处理

大数据处理平台的架构演进经历了从批处理到实时流处理的转变,这种转变主要是为了应对越来越多的数据、更快的分析需求和实时决策的要求。以下是从批处理到实时流处理的架构演进过程:

批处理架构:

在大数据处理的早期阶段,批处理架构是主要的架构范式。这种架构中,数据会按照一定的时间间隔或者一定的数据量进行批量处理。数据会被收集、存储,然后在固定的时间间隔内进行处理和分析。典型的批处理框架包括Hadoop MapReduce。

优点:

  • 适用于离线数据处理,特别是对历史数据进行分析和挖掘。
  • 能够处理大规模的数据,适合大数据分析任务。
  • 易于调度和资源管理。

缺点:

  • 不能实现实时分析和决策,延迟较高。
  • 不适合需要立即响应的业务场景。
  • 对于数据变化频繁的场景,批处理难以满足需求。

实时流处理架构:

随着数据量和业务需求的增长,批处理架构的限制变得更为明显。实时流处理架构逐渐崭露头角,允许数据以流的形式进行处理和分析,以实现更低的延迟和更高的即时性。在实时流处理架构中,数据可以在产生的时候立即被处理,从而支持更实时的决策和分析。流处理框架如Apache Kafka和Apache Flink在这一演进过程中扮演了重要角色。

优点:

  • 实时性更强,能够满足需要即时响应的场景。
  • 适用于实时监控、实时分析和实时决策。
  • 可以减少数据处理的延迟,提高数据价值。

缺点:

  • 对于一些历史数据分析等场景,实时流处理可能不如批处理高效。
  • 处理大量实时数据可能需要更多的资源和复杂的管理。

混合架构:

随着业务需求的多样化,批处理和实时流处理的结合成为了一种常见的架构选择。在许多场景下,批处理和实时处理是相辅相成的,可以结合起来提供更全面的数据处理能力。例如,将实时流数据存储下来,然后在批量任务中进行深入分析和挖掘。

优点:

  • 可以充分发挥批处理和实时处理的优势,满足不同的业务需求。
  • 可以减少实时流处理的压力,将部分处理转移到批处理中进行。

缺点:

  • 增加了系统的复杂性,需要同时维护批处理和实时处理的组件。
  • 数据的一致性和同步可能需要更多的注意。

综上所述,大数据处理平台的架构演进从批处理到实时流处理,反映了对数据处理速度和实时性的不断追求。不同的架构范式在不同的场景下有其独特的优势,根据业务需求和数据特性进行选择和结合,可以更好地满足多样化的大数据处理需求。

后记 👉👉💕💕美好的一天,到此结束,下次继续努力!欲知后续,请看下回分解,写作不易,感谢大家的支持!! 🌹🌹🌹

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3天前
|
分布式计算 大数据 数据处理
经典大数据处理框架与通用架构对比
【6月更文挑战第15天】本文介绍Apache Beam是谷歌开源的统一数据处理框架,提供可移植API,支持批处理和流处理。与其他架构相比,Lambda和Kappa分别专注于实时和流处理,而Beam在两者之间提供平衡,具备高实时性和数据一致性,但复杂性较高。选择架构应基于业务需求和场景。
12 3
经典大数据处理框架与通用架构对比
|
4天前
|
存储 分布式计算 大数据
数据仓库与数据湖在大数据架构中的角色与应用
在大数据时代,数据仓库和数据湖分别以结构化数据管理和原始数据存储见长,共同助力企业数据分析。数据仓库通过ETL处理支持OLAP查询,适用于历史分析、BI报表和预测分析;而数据湖则存储多样化的原始数据,便于数据探索和实验。随着技术发展,湖仓一体成为趋势,融合两者的优点,如Delta Lake和Hudi,实现数据全生命周期管理。企业应根据自身需求选择合适的数据架构,以释放数据潜力。【6月更文挑战第12天】
21 5
|
5天前
|
监控 大数据 Java
使用Apache Flink进行大数据实时流处理
Apache Flink是开源流处理框架,擅长低延迟、高吞吐量实时数据流处理。本文深入解析Flink的核心概念、架构(包括客户端、作业管理器、任务管理器和数据源/接收器)和事件时间、窗口、状态管理等特性。通过实战代码展示Flink在词频统计中的应用,讨论其实战挑战与优化。Flink作为大数据处理的关键组件,将持续影响实时处理领域。
44 5
|
7天前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI产品使用合集之如何在odps上启动独立的任务
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
人工智能平台PAI产品使用合集之如何在odps上启动独立的任务
|
7天前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI产品使用合集之在maxcompute上跑模型,如何在本地进行推理
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
人工智能平台PAI产品使用合集之在maxcompute上跑模型,如何在本地进行推理
|
7天前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI操作报错合集之在ODPS的xxx_dev项目空间调用easyrec训练,需要访问yyy项目空间的OSS,出现报错,是什么导致的
阿里云人工智能平台PAI (Platform for Artificial Intelligence) 是阿里云推出的一套全面、易用的机器学习和深度学习平台,旨在帮助企业、开发者和数据科学家快速构建、训练、部署和管理人工智能模型。在使用阿里云人工智能平台PAI进行操作时,可能会遇到各种类型的错误。以下列举了一些常见的报错情况及其可能的原因和解决方法。
|
29天前
|
监控 负载均衡 Java
【阿里云云原生专栏】微服务架构在阿里云云原生平台上的应用实例与优化策略
【5月更文挑战第20天】本文介绍了在阿里云云原生平台实现微服务架构的步骤,包括基于Spring Cloud的Docker化部署、使用ACK部署微服务,以及优化策略:服务发现与负载均衡(借助Istio)和监控日志管理。通过这种方式,企业能提升应用的可扩展性、可维护性和敏捷性。
211 5
|
30天前
|
Python
平台组成-仿真数据平台
平台里内建了一个数据产生平台
|
1月前
|
分布式计算 Hadoop Java
大数据实战平台环境搭建(下)
大数据实战平台环境搭建(下)
28 0
|
1月前
|
分布式计算 Hadoop Java
大数据实战平台环境搭建(上)
大数据实战平台环境搭建(上)
25 1