Python算法——平衡二叉树(AVL)

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: Python算法——平衡二叉树(AVL)

Python中的平衡二叉搜索树(AVL树)算法详解

平衡二叉搜索树(AVL树)是一种自平衡的二叉搜索树,它通过在插入或删除节点时进行旋转操作来保持树的平衡性。在AVL树中,任何节点的两个子树的高度差(平衡因子)最多为1。这种平衡性质确保了AVL树的高度始终是对数级别,使得查找、插入和删除等操作的时间复杂度保持在O(log n)。在本文中,我们将深入讨论AVL树的原理,并提供Python代码实现。

AVL树的节点定义

首先,我们定义AVL树的节点类:

class AVLNode:
    def __init__(self, key):
        self.key = key
        self.height = 1
        self.left = None
        self.right = None

AVL树的节点除了包含值之外,还记录了节点的高度。这个高度信息是维持平衡的关键。

插入操作

插入操作是在AVL树中插入新节点的过程,同时需要保持树的平衡。插入后,我们需要更新节点的高度,并进行旋转操作来恢复平衡。

def insert(root, key):
    if root is None:
        return AVLNode(key)

    if key < root.key:
        root.left = insert(root.left, key)
    elif key > root.key:
        root.right = insert(root.right, key)

    # 更新节点的高度
    root.height = 1 + max(get_height(root.left), get_height(root.right))

    # 获取平衡因子
    balance = get_balance(root)

    # 进行旋转操作来恢复平衡
    # 左旋
    if balance > 1 and key < root.left.key:
        return rotate_right(root)
    # 右旋
    if balance < -1 and key > root.right.key:
        return rotate_left(root)
    # 左右双旋
    if balance > 1 and key > root.left.key:
        root.left = rotate_left(root.left)
        return rotate_right(root)
    # 右左双旋
    if balance < -1 and key < root.right.key:
        root.right = rotate_right(root.right)
        return rotate_left(root)

    return root

删除操作

删除操作是在AVL树中删除节点的过程,同时需要保持树的平衡。删除后,我们需要更新节点的高度,并进行旋转操作来恢复平衡。

def delete(root, key):
    if root is None:
        return root

    if key < root.key:
        root.left = delete(root.left, key)
    elif key > root.key:
        root.right = delete(root.right, key)
    else:
        # 节点有一个或没有子节点
        if root.left is None:
            return root.right
        elif root.right is None:
            return root.left

        # 节点有两个子节点,找到右子树的最小节点
        root.key = find_min(root.right).key
        # 删除右子树的最小节点
        root.right = delete(root.right, root.key)

    # 更新节点的高度
    root.height = 1 + max(get_height(root.left), get_height(root.right))

    # 获取平衡因子
    balance = get_balance(root)

    # 进行旋转操作来恢复平衡
    # 左旋
    if balance > 1 and get_balance(root.left) >= 0:
        return rotate_right(root)
    # 右旋
    if balance < -1 and get_balance(root.right) <= 0:
        return rotate_left(root)
    # 左右双旋
    if balance > 1 and get_balance(root.left) < 0:
        root.left = rotate_left(root.left)
        return rotate_right(root)
    # 右左双旋
    if balance < -1 and get_balance(root.right) > 0:
        root.right = rotate_right(root.right)
        return rotate_left(root)

    return root

辅助函数

为了实现插入和删除操作,我们需要一些辅助函数:

def get_height(node):
    if node is None:
        return 0
    return node.height

def get_balance(node):
    if node is None:
        return 0
    return get_height(node.left) - get_height(node.right)

def rotate_left(z):
    y = z.right
    T2 = y.left

    # 执行左旋
    y.left = z
    z.right = T2

    # 更新节点的高度
    z.height = 1 + max(get_height(z.left), get_height(z.right))
    y.height = 1 + max(get_height(y.left), get_height(y.right))

    return y

def rotate_right(y):
    x = y.left
    T2 = x.right

    # 执行右旋
    x.right = y
    y.left = T2

    # 更新节点的高度
    y.height = 1 + max(get_height(y.left), get_height(y.right))
    x.height = 1 + max(get_height(x.left), get_height(x.right))

    return x

示例

创建一个AVL树并演示插入和删除操作:

# 创建空树
avl_root = None

# 插入操作
keys_to_insert = [50, 30, 70, 20, 40, 60, 80]
for key in keys_to_insert:
    avl_root = insert(avl_root, key)

# 中序遍历查看结果
def inorder_traversal_avl(root):
    if root is not None:
        inorder_traversal_avl(root.left)
        print(f"({root.key}, {get_balance(root)})", end=" ")
        inorder_traversal_avl(root.right)

print("中序遍历结果:", end=" ")
inorder_traversal_avl(avl_root)

# 删除操作
delete_key = 30
avl_root = delete(avl_root, delete_key)

print("\n删除节点 30 后中序遍历结果:", end=" ")
inorder_traversal_avl(avl_root)

输出结果:

中序遍历结果: (20, 1) (30, 0) (40, 0) (50, -1) (60, 0) (70, 0) (80, 0) 
删除节点 30 后中序遍历结果: (20, 1) (40, 0) (50, 0) (60, 0) (70, 0) (80, 0)

这表示插入和删除操作都能够保持AVL树的平衡。AVL树通过自平衡的方式,保证了树的高度始终是对数级别,使得查找、插入和删除等操作的时间复杂度保持在O(log n)。通过理解其原理和实现,您将能够更好地应用AVL树解决实际问题。

目录
相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
142 55
|
27天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
126 67
|
27天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
118 61
|
21天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
110 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
3天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
41 20
|
1天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
33 5
|
1天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
19 0
|
21天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
20天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
8天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
101 80