22 Herschel(1850)和麦克斯韦(1860)的推导

简介: 22 Herschel(1850)和麦克斯韦(1860)的推导

第二条小径是天文学家John Hershcel和物理学家麦克斯韦(Maxwell)发现的。1850年,天文学家Herschel在对星星的位置进行测量的时候,需要考虑二维的误差分布,为了推导这个误差的概率密度分布f(x,y),Herschel设置了两个准则:

  • .x轴和y轴的误差是相互独立的,即误差的概率在正交的方向上相互独立;
  • 误差的概率分布在空间上具有旋转对称性,即误差的概率分布和角度没有关系。

这两个准则对于Herschel考虑的实际测量问题看起来都很合理。由准则1,可以得到f(x,y)应该具有如下形式:

1860年,我们伟大的物理学家麦克斯韦在考虑气体分子的运动速度分布的时候,在三维空间中基于类似的准则推导出了气体分子运动的分布是正态分布

。这就是著名的麦克斯韦分子速率分布定律。大家还记得我们在普通物理中学过的麦克斯韦-波尔兹曼气体速率分布定律吗?

所以这个分布其实是三个正态分布的乘积。你的物理老师是否告诉过你其实这个分布就是三维正态分布?反正我是一直不知道,直到今年才明白。

Herschel-Maxwell推导的神妙之处在于,没有利用任何概率论的知识,只是基于空间几何的不变性,就推导出了正态分布。美国诺贝尔物理学奖得主费曼(Feymann)每次看到一个有π的数学公式的时候,就会问:圆在哪里?这个推导中使用到了,也就是告诉我们正态分布密度公式中有个π,其根源来在于二维正态分布中的等高线恰好是个圆。

目录
相关文章
|
8月前
|
消息中间件 Kubernetes NoSQL
c++中的类型推导
c++中的类型推导
|
8月前
|
编译器 程序员 C++
【C++ 类型推导 】深入探索C++类型推导:从C++11到C++20的进化之路
【C++ 类型推导 】深入探索C++类型推导:从C++11到C++20的进化之路
97 0
23 Landon的推导(1941)
23 Landon的推导(1941)
43 0
21 高斯的推导(1809)
21 高斯的推导(1809)
51 0
|
算法
梯度下降算法详解(从下山比喻、数学推导到代码实现)
梯度下降算法详解(从下山比喻、数学推导到代码实现)
1555 0
|
C++
斐波那契数列重要恒等式的简单推导及应用(非严格证明)
斐波那契数列重要恒等式的简单推导及应用(非严格证明)
255 0
|
人工智能 开发者
最小二乘法推导与求解 | 学习笔记
快速学习最小二乘法推导与求解
最小二乘法推导与求解 | 学习笔记
|
Python
列表解析(推导)
列表解析(推导)
87 0
|
Java 编译器
轻松理解Lambda表达式(推导过程)
轻松理解Lambda表达式(推导过程)
109 0

热门文章

最新文章