机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)

一、线性回归

1.线性回归的假设函数

1698827597271.png

2.线性回归的损失函数(Loss Function)

MSE(均方误差)J=12m∑i=1m(yi′−yi)2

通过梯度下降法或正规方程(θ=(xTx)−1xTy)求出使得代价函数最小的参数

两者区别

梯度下降 正规方程
需要选择学习率 不需要
当特征数量较大时也能较好适用(O(kn^2)) 需要计算(X^TX^-1),如果特征数量n较大则运算代价大,通常n小于10000时可接受(O(n^3))
适用于各种类型的模型 只适用于线性模型

3.简述岭回归与Lasso回归以及使用场景

目的:解决线性回归出现过拟合的情况;解决在通过正规方程方法求解 θ 的过程中出现的 XTX不可逆的情况

本质:约束(限制)要优化的参数

这两种回归均通过在损失函数中引入正则化项来达到目的:

(L2) 岭回归损失函数 J(θ)=12m∑i=1m(hθ(x(i))−y(i))2+λ∑j=1nθj2

(L1) Lasso回归损失函数 J(θ)=12m∑i=1m(hθ(x(i))−y(i))2+λ∑j=1n|θj|

L1正则化容易得到稀疏矩阵

4.什么场景下用L1、L2正则化

L2正则化会使参数的绝对值变小,增强模型的稳定性(不会因为数据变化而产生很大的震荡);而L1正则化会使一些参数为0,可以实现特征稀疏,增强模型解释性。

5.什么是ElasticNet回归

综合了L1正则化项和L2正则化项

25e05cca0ab653c4b27b07c22dbc90c.png

6.ElasticNet回归的使用场景

使用Lasso回归太过(太多特征被稀疏为0),而岭回归正则化的不够(回归系数衰减太慢)的时候,可以考虑ElasticNet回归。

L1正则化和L2正则化分别是假设参数服从laplace分布和高斯分布。

线性回归中的残差服从均值为0的正态分布。

L2:权重衰减

7.线性回归要求因变量服从正态分布?(持保留态度)

假设线性回归的噪声服从均值为0的正态分布。 当噪声符合正态分布N(0, δ2 )时,因变量则符合正态分布N(ax(i)+b, δ2 ),其中预测函数y=ax(i)+b。这个结论可以由正态分布的概率密度函数得到。也就是说当噪声符合正态分布时,其因变量必然也符合正态分布。

在用线性回归模型拟合数据之前,首先要求数据应符合或近似符合正态分布,否则得到的拟合函数不正确。

二、逻辑回归(Logistics Regression)

1.本质:极大似然估计

逻辑回归是用来做分类算法的。把线性回归的结果Y代入一个非线性变换的Sigmoid函数中,即可得到[0,1]之间取值范围的数S,S可以把它看成是一个概率值,如果设置概率阈值为0.5,那么S大于0.5可以看成是正样本,小于0.5看成是负样本,就可以进行分类。

2.激活函数:Sigmoid

3.损失函数:对数损失函数(log loss)

公式中的 y=1 表示的是真实值为1时用第一个公式, y=0 表示真实值为0时用第二个公式计算损失。

为什么要加上log函数呢?

当真实样本为1时,但h=0,那么log0=∞,即对模型最大的惩罚力度;当h=1时,那么log1=0,相当于没有惩罚,也就是没有损失,达到最优结果。把上面损失函数写成统一的形式:

4.代价函数:交叉熵(Cross Entropy):

最后按照梯度下降法,求解极小值点,得到想要的模型效果。

5.可以进行多分类吗?

可以 ,从二分类问题过度到多分类问题(one vs rest),思路步骤如下:

  1. 将类型class1看作正样本,其他类型全部看作负样本,可得到样本标记类型为该类型的概率p1。
  2. 然后再将另外类型class2看作正样本,其他类型全部看作负样本,同理得到p2。
  3. 以此循环,我们可以得到该待预测样本的标记类型分别为类型class i时的概率pi,最后取pi中最大的那个概率对应的样本标记类型作为待预测样本类型。


总之还是以二分类来依次划分,并求出最大概率结果。

6.逻辑回归优缺点

  • 能以概率的形式输出结果,而非只是0,1判定。
  • 可解释性强,可控度高,训练快。
  • 因为结果是概率,可以做ranking model(排序模型)。

  • 对模型中自变量多重共线性较为敏感。

7.逻辑回归有哪些应用

  • CTR预估/推荐系统的learning to rank/各种分类场景。
  • 某搜索引擎厂的广告CTR(点击率)预估基线版是LR。
  • 某电商搜索排序/广告CTR预估基线版是LR。
  • 某电商的购物搭配推荐用了大量LR。
  • 某现在一天广告赚1000w+的新闻app排序基线是LR。

8.逻辑回归为什么要对特征进行离散化。

  1. 非线性!逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合; 离散特征的增加和减少都很容易,易于模型的快速迭代;
  2. 速度快!稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;
  3. 鲁棒性!离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄200岁”会给模型造成很大的干扰;
  4. 方便交叉与特征组合:离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;
  5. 简化模型:特征离散化以后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。

手推(后续补上)

若要求多分类,需要把sigmoid换成softmax

实战中,设置 α=[0.001,0.003,0.01,0.03,0.1,0.3,1,...]

损失函数、代价函数、目标函数

损失函数(Loss Function )是定义在单个样本上的,算的是一个样本的误差。

代价函数(Cost Function )是定义在整个训练集上的,是所有样本误差的平均,也就是损失函数的平均。

目标函数(Object Function)定义为:最终需要优化的函数。等于经验风险+结构风险(也就是Cost Function + 正则化项)。对于目标函数来说在有约束条件下的最小化就是损失函数。

机器学习中的最优化方法

1.梯度下降法

优化思想:用当前位置负梯度方向作为搜索方向。

2.牛顿法

使用函数f(x)的泰勒级数的前几项来寻找f(x)的根

优:以本质上看,牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法更快。

缺:牛顿法是一种迭代算法,每一步都需要求解目标函数的Hesssian矩阵的逆矩阵,计算较复杂。

3.拟牛顿法

本质思想:改善牛顿法内次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似Hessian(黑塞)矩阵的逆,从而简化运算的复杂度。

4.共轭梯度法

仅需利用一阶导数信息,但克服了梯度下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵的逆的特点。

三、支持向量机(SVM)

一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。

函数间隔

给定一个超平面(w,b),定义该超平面关于样本点 (xi,yi) 的函数间隔为: γ=yi(wTxi+b) ,定义该超平面关于训练集T的函数间隔为:

几何间隔(geometrical margin)

1.损失函数:合页损失函数(Hinge loss)

SVM的损失函数就是合页损失函数+正则项

minw,b∑i=1N[1−yi(wTxi+b)]++λ||w||2

2.为什么要将求解SVM的原始问题转换为其对偶问题?

  1. 对偶问题更容易求解,
  2. 可以自然引入核函数,进而推广到非线性分类问题。

若原问题与对偶问题均存在可行解,则两者均存在最优解)。

3.支持向量

距离超平面最近的且满足一定条件的几个样本点。

4.带核的SVM为什么能分类非线性问题

核函数的本质是两个函数的内积,通过核函数将其映射到高维空间,在高维空间非线性问题转换为线性问题,SVM得到超平面是高维空间的线性分类平面,其分类结果也视为低维空间的非线性分类结果。

5.SVM的应用

SVM在很多诸如文本分类,图像分类,生物序列分析和生物数据挖掘,手写字符识别等领域有很多的应用

6. 如何选择核函数?

  • 如果特征的数量大到和样本数量差不多,则选用LR或者线性核的SVM;
  • 如果特征的数量小,样本的数量正常,则选用SVM+高斯核函数;
  • 如果特征的数量小,而样本的数量很大,则需要手工添加一些特征从而变成第一种情况。

7.LR和SVM的联系与区别

相同点

  • 如果不考虑核函数,都是线性分类器。
  • 都是监督学习算法。
  • 都是判别模型。判别模型不关心数据是怎么生成的,它只关心信号之间的差别,然后用差别来简单对给定的一个信号进行分类。

不同点

  • (本质区别):目标函数不同,逻辑回归是log loss,SVM采用的是hinge loss(铰链损失函数),这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。
  • LR是参数模型,svm是非参数模型。
  • 与SVM相比,LR对异常数据更加敏感。
  • SVM的目标是结构风险最小化,逻辑回归目标函数是最小化先验概率。
  • 在训练集较小时,SVM较适用(基于距离分类),需要对数据先做归一化;LR则需要更多的样本(基于概率分类)
  • SVM只考虑支持向量(support vectors),也就是和分类最相关的少数点,去学习分类器。而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重。

8.加入松弛变量的SVM的训练误差可以为0吗?

使用SMO(序列最小优化算法)算法训练的线性分类器并不一定能得到训练误差为0的模型。这是由于优化目标改变了,并不再是使训练误差最小。

相关文章
|
1月前
|
机器学习/深度学习 算法 知识图谱
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
【机器学习】逻辑回归原理(极大似然估计,逻辑函数Sigmod函数模型详解!!!)
|
1月前
|
机器学习/深度学习 存储 自然语言处理
【机器学习】基于逻辑回归的分类预测
【机器学习】基于逻辑回归的分类预测
|
1月前
|
机器学习/深度学习 算法
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)
【机器学习】逻辑回归介绍(逻辑回归应用场景,原理,损失及优化详解!!!)
|
3月前
|
机器学习/深度学习
机器学习回归模型相关重要知识点总结
机器学习回归模型相关重要知识点总结
|
3月前
|
机器学习/深度学习 人工智能 算法
【人工智能】机器学习、分类问题和逻辑回归的基本概念、步骤、特点以及多分类问题的处理方法
机器学习是人工智能的一个核心分支,它专注于开发算法,使计算机系统能够自动地从数据中学习并改进其性能,而无需进行明确的编程。这些算法能够识别数据中的模式,并利用这些模式来做出预测或决策。机器学习的主要应用领域包括自然语言处理、计算机视觉、推荐系统、金融预测、医疗诊断等。
66 1
|
3月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
73 3
|
3月前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
152 2
|
3月前
|
机器学习/深度学习 算法
【机器学习】支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择(面试回答)?
文章对支持向量机(SVM)、逻辑回归(LR)和决策树(DT)进行了直观和理论上的对比,并提供了在选择这些算法时的考虑因素,包括模型复杂度、损失函数、数据量需求、对缺失值的敏感度等。
60 1
|
3月前
|
机器学习/深度学习
【机器学习】逻辑回归LR的推导及特性是什么,面试回答?
逻辑回归(LR)的推导和特性的详细解释,包括其作为二分类模型的基本原理、损失函数(对数损失函数),以及决策树的特性,如不需要先验假设、高效性、易解释性、对缺失值的不敏感性,以及对冗余属性的鲁棒性。
40 1
|
4月前
|
机器学习/深度学习 数据采集 人工智能