58 Hive案例(访问时长统计)

简介: 58 Hive案例(访问时长统计)
需求

从web日志中统计每日访客平均停留时间

实现步骤

1、由于要从大量请求中分辨出用户的各次访问,逻辑相对复杂,通过hive直接实现有困难,因此编写一个mr程序来求出访客访问信息(详见代码)

启动mr程序获取结果:

[hadoop@hdp-node-01 ~]$ hadoop jar weblog.jar cn.itcast.bigdata.hive.mr.UserStayTime /weblog/input /weblog/stayout

2、将mr的处理结果导入hive表

drop table t_display_access_info_tmp;
create table t_display_access_info_tmp(remote_addr string,firt_req_time string,last_req_time string,stay_long bigint)
row format delimited fields terminated by '\t';
load data inpath '/weblog/stayout4' into table t_display_access_info_tmp;

3、得出访客访问信息表 “t_display_access_info”

由于有一些访问记录是单条记录,mr程序处理处的结果给的时长是0,所以考虑给单次请求的停留时间一个默认市场30秒

drop table t_display_access_info;
create table t_display_access_info as
select remote_addr,firt_req_time,last_req_time,
case stay_long
when 0 then 30000
else stay_long
end as stay_long
from t_display_access_info_tmp;

4、统计所有用户停留时间平均值

select avg(stay_long) from t_display_access_info;


目录
相关文章
|
8月前
|
SQL 分布式计算 资源调度
线上 hive on spark 作业执行超时问题排查案例分享
线上 hive on spark 作业执行超时问题排查案例分享
|
1月前
|
SQL 关系型数据库 MySQL
Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
【2月更文挑战第9天】Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
119 7
|
22天前
|
SQL HIVE
【Hive SQL 每日一题】统计用户连续下单的日期区间
该SQL代码用于统计用户连续下单的日期区间。首先按`user_id`和`order_date`分组并去除重复,然后使用`row_number()`标记行号,并通过`date_sub`与行号计算潜在的连续日期。接着按用户ID和计算后的日期分组,排除连续订单数少于2的情况,最后提取连续下单的起始和结束日期。输出结果展示了用户连续下单的日期范围。
|
22天前
|
SQL 关系型数据库 HIVE
【Hive SQL 每日一题】统计最近1天/7天/30天商品的销量
这段内容是关于SQL查询的示例,目标是统计`sales`表中最近1天、7天和30天的商品销量和销售次数。表结构包含`id`、`product_id`、`quantity`和`sale_date`字段。初始查询方法通过三个独立的子查询完成,但效率较低。优化后的查询使用了`lateral view explode`将数据炸裂,通过一次查询同时获取所有所需时间段的数据,提高了效率。示例中展示了优化前后的SQL代码及结果对比。
|
22天前
|
SQL HIVE
【Hive SQL 每日一题】统计最近7天内连续下单3日的用户量
创建了一个名为`sales`的测试表,包含`user_id`、`product_id`、`quantity`和`sale_date`字段,插入了多条销售数据。需求是找出最近7天内连续下单3天的用户数量。SQL查询通过分组和窗口函数`row_number()`检查日期连续性,最终计算满足条件的唯一用户数。示例结果显示有3名用户符合条件。
|
22天前
|
SQL BI HIVE
【Hive SQL 每日一题】统计用户留存率
用户留存率是衡量产品成功的关键指标,表示用户在特定时间内持续使用产品的比例。计算公式为留存用户数除以初始用户数。例如,游戏发行后第一天有10000玩家,第七天剩5000人,第一周留存率为50%。提供的SQL代码展示了如何根据用户活动数据统计每天的留存率。需求包括计算系统上线后的每日留存率,以及从第一天开始的累计N日留存率。通过窗口函数`LAG`和`COUNT(DISTINCT user_id)`,可以有效地分析用户留存趋势。
|
1月前
|
SQL HIVE 索引
Hive窗口函数案例总结
Hive窗口函数案例总结
|
1月前
|
SQL 消息中间件 存储
案例:Flume消费Kafka数据保存Hive
案例:Flume消费Kafka数据保存Hive
89 0
|
6月前
|
存储 SQL 分布式数据库
分布式数据恢复-hbase+hive分布式存储数据恢复案例
hbase+hive分布式存储数据恢复环境: 16台某品牌R730XD服务器节点,每台物理服务器节点上有数台虚拟机,虚拟机上配置的分布式,上层部署hbase数据库+hive数据仓库。 hbase+hive分布式存储故障&初检: 数据库文件被误删除,数据库无法使用。 通过现场对该分布式环境的初步检测,发现虚拟机还可以正常启动,虚拟机里面的数据库块文件丢失。好在块文件丢失之后没有对集群环境写入数据,底层数据损坏可能性比较小。
|
7月前
|
SQL BI HIVE
59 Hive案例(级联求和)
59 Hive案例(级联求和)
23 0