poj 2182 Lost Cows(树状数组)

简介: FJ有n头牛,现在它们排成一排,每一头牛都有一个不同的编号(1-n),现在知道从第二头牛开始每头牛左边比自己编号小的牛的数目,让你确定每头牛的编号。

Description


N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacular display of poor judgment, they visited the neighborhood 'watering hole' and drank a few too many beers before dinner. When it was time to line up for their evening meal, they did not line up in the required ascending numerical order of their brands.


Regrettably, FJ does not have a way to sort them. Furthermore, he's not very good at observing problems. Instead of writing down each cow's brand, he determined a rather silly statistic: For each cow in line, he knows the number of cows that precede that cow in line that do, in fact, have smaller brands than that cow.


Given this data, tell FJ the exact ordering of the cows. ……………………


题意:


         FJ有n头牛,现在它们排成一排,每一头牛都有一个不同的编号(1-n),现在知道从第二头牛开始每头牛左边比自己编号小的牛的数目,让你确定每头牛的编号。


思路:


       我用一个树状数组来表示第i头牛的左边有多少比自己标号小的,树状数组必须初始化,每个节点必须加1。每次我们可以知道最后一头牛的编号x,然后然后更新x以后的区间使其都减1(这里也可以使用线段树,不过感觉比较麻烦,因为树状数组的特性,只需要更新x就好了),然后求倒数第二头的编号,我们只需要找到一个x,使得sum(x) 为该牛左边小于其编号牛的数量,使用二分查找可以提高查找速率,然后是倒数第三头的………………………………


       因为是倒着来的,为了熟悉stl,我使用了其封装的stack 栈。


    下面是解题代码:

#include <stdio.h>
#include <string.h>
#include <stack>
#define maxn 8005
using namespace std;
int a[maxn];
int ans[maxn];
int n;
int lowbit(int x)
{
    return x&(-x);
}
void add(int x, int v)
{
    while (x <= n)
    {
        a[x] += v;
        x += lowbit(x);
    }
}
int sum(int x)
{
    int s = 0;
    while (x > 0)
    {
        s += a[x];
        x -= lowbit(x);
    }
    return s;
}
int binarysearch(int l, int r, int x)
{
    if (l == r)
        return l;
    int mid = (l + r) >> 1;
    if (x <= sum(mid))
        return binarysearch(l, mid, x);
    else
        return binarysearch(mid+1, r, x);
}
/*二分查找也可以写成非递归的形式,避免了函数的调用和栈的开销,节约时间空间,
但递归的形式容易理解,也不易出错,各有优劣,这就看你如何取舍了*/
stack <int> s;
int main()
{
    int t;
    while (scanf("%d",&n) != EOF)
    {
        memset(a, 0, sizeof(a));
        //因为每次使用s后s必定为空,就不用初始化了
        int i;
        for (i = 1; i < n; i++)
        {
            add(i+1,1);
            scanf("%d",&t);
            s.push(t);
        }
        while (i > 1)
        {
            int x = binarysearch(1, n, s.top());
            ans[i--] = x;
            add(x, -1);
            s.pop();
        }
        ans[1] = binarysearch(1, n, 0); 
        //while循环只循环n-1次(如果循环n次栈会出错),所以要加这行
        for (i = 1; i <= n; i++)
        {
            printf("%d\n",ans[i]);
        }
    }
    return 0;
}
目录
相关文章
EMQ
|
Kubernetes Cloud Native 物联网
在 Kubernetes 上体验 EMQX 5.0 的 MQTT over QUIC 特性
本文将介绍如何在 Kubernetes 上部署 EMQX 集群并开启 MQTT over QUIC 功能。
EMQ
353 0
在 Kubernetes 上体验 EMQX 5.0 的 MQTT over QUIC 特性
|
XML 设计模式 Java
在Android中使用IOC框架让代码更清爽(一)
在Android中使用IOC框架让代码更清爽(一)
391 0
在Android中使用IOC框架让代码更清爽(一)
数据结构题:根据所给权值设计相应的哈夫曼树,并设计哈夫曼编码
数据结构题:根据所给权值设计相应的哈夫曼树,并设计哈夫曼编码
数据结构题:根据所给权值设计相应的哈夫曼树,并设计哈夫曼编码
|
算法
NOIP-C++大神培养计划 Step1.1.2基础算法——模拟算法2
大家好,我是小笨笨,今天我们继续来讲解模拟算法。 我们直接上例题! 栗1.1.2-1 洛谷P1014 Cantor表https://www.luogu.org/problemnew/show/P1014题目描述现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。
1544 0
|
4天前
|
云安全 人工智能 算法
以“AI对抗AI”,阿里云验证码进入2.0时代
三层立体防护,用大模型打赢人机攻防战
1317 4
|
4天前
|
机器学习/深度学习 安全 API
MAI-UI 开源:通用 GUI 智能体基座登顶 SOTA!
MAI-UI是通义实验室推出的全尺寸GUI智能体基座模型,原生集成用户交互、MCP工具调用与端云协同能力。支持跨App操作、模糊语义理解与主动提问澄清,通过大规模在线强化学习实现复杂任务自动化,在出行、办公等高频场景中表现卓越,已登顶ScreenSpot-Pro、MobileWorld等多项SOTA评测。
667 3
|
5天前
|
人工智能 Rust 运维
这个神器让你白嫖ClaudeOpus 4.5,Gemini 3!还能接Claude Code等任意平台
加我进AI讨论学习群,公众号右下角“联系方式”文末有老金的 开源知识库地址·全免费
|
11天前
|
编解码 人工智能 自然语言处理
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
773 6