Python使用多进程并行加速业务操作 完整代码

简介: Python使用多进程并行加速业务操作 完整代码

Python使用多进程并行加速业务操作 完整代码






需求分析


  最近在对一个数据集进行处理,共2000条,每条去调一个第三方接口,耗时7-10秒。单线程处理一次要3.9-5.6小时,于是想着用多进程加速一下。 需求大致如下:


 1、能配置进程数目


 2、能加载要处理的数据


 3、能打印完善的日志


 4、多进程能共享处理后的数据结果,方便最终获取/导出


完整代码


  Python代码如下:(其中需要修改的地方加了TODO)在win和linux上都可以用


import logging
import math
import multiprocessing
import time
import pandas as pd
from contextlib import contextmanager
import threading
# 设置日志配置
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)
# 定义超时异常
class TimeoutException(Exception): pass
# 超时控制
@contextmanager
def time_limit(seconds):
    timer = threading.Timer(seconds, lambda: _raise_timeout_exception())
    def _raise_timeout_exception():
        raise TimeoutException("Timed out!")
    try:
        timer.start()
        yield
    finally:
        timer.cancel()
def process_data(i, data, results, lock):
    logging.info('------group: ' + str(i) + '------')
    logging.info('------len: ' + str(len(data)) + '------')
    for _, row in data.iterrows():
        if _ % (math.ceil(len(data) / 10.0)) == 0:
            logging.info('------group' + str(i) + ': ' + str(_) + '/' + str(len(data)) + '------')
        try:
            # 超时限制 TODO 秒数
            with time_limit(20):
                # 模拟任务 TODO 任务
                time.sleep(1)
                # 使用锁来保证对结果列表的进程安全访问
                lock.acquire()
                try:
                    # 将结果添加到共享的结果列表中 TODO 收集结果
                    results.append(row['id'])
                finally:
                    lock.release()
        except Exception as e:
            logging.info('------err: ' + str(e) + '------')
if __name__ == '__main__':
    # 手动设置并行进程数目 TODO 进程数目
    group_num = 8
    # 从电脑配置中设置并行进程数目
    # group_num = multiprocessing.cpu_count()
    # 读取数据 TODO 数据源
    data = pd.read_excel('data.xlsx')
    # 使用pandas平均划分数据
    grouped_data = data.groupby(data.index % group_num)
    # 定义共享的结果列表
    manager = multiprocessing.Manager()
    results = manager.list()
    # 创建锁
    lock = multiprocessing.Lock()
    start_time = time.time()
    # 定义多进程
    processes = []
    for i in range(group_num):
        p = multiprocessing.Process(target=process_data,
                                    args=(i, grouped_data.get_group(i).reset_index(), results, lock))
        processes.append(p)
    # 启动
    for _p in processes:
        _p.start()
    for _p in processes:
        _p.join()
    end_time = time.time()
    execution_time = end_time - start_time
    # 打印数据
    print(f"代码执行时间:{execution_time}秒")
    print(results)


  data.xlsx里面的数据是随便打的:


image.png


本demo性能分析


  16核CPU,执行上述代码,其中任务部分用了time.sleep(1)停了1秒,耗时分析如下:


进程数 耗时
1 29.317383289337158秒
4 8.288025140762329秒
8 5.77861475944519秒
14 4.941734313964844秒
16 5.262717008590698秒


可以看到加了多进程,加速效果还是比较明显的。


Python中单线程、多线程和多进程的效率对比实验


此处参考:http://blog.atomicer.cn/2016/09/30/Python


 我们知道,线程操作、进程操作一般分为CPU密集型操作、IO密集型操作、网络请求密集型操作。


 资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。所以我们根据实验对比不同场景的效率:


image.png


通过上面的结果,我们可以看到:


 多线程在IO密集型的操作下似乎也没有很大的优势(也许IO操作的任务再繁重一些就能体现出优势),在CPU密集型的操作下明显地比单线程线性执行性能更差,但是对于网络请求这种忙等阻塞线程的操作,多线程的优势便非常显著了


 多进程无论是在CPU密集型还是IO密集型以及网络请求密集型(经常发生线程阻塞的操作)中,都能体现出性能的优势。不过在类似网络请求密集型的操作上,与多线程相差无几,但却更占用CPU等资源,所以对于这种情况下,我们可以选择多线程来执行。

相关文章
|
2月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
162 26
|
1月前
|
测试技术 Python
Python装饰器:为你的代码施展“魔法”
Python装饰器:为你的代码施展“魔法”
216 100
|
1月前
|
开发者 Python
Python列表推导式:一行代码的艺术与力量
Python列表推导式:一行代码的艺术与力量
296 95
|
2月前
|
Python
Python的简洁之道:5个让代码更优雅的技巧
Python的简洁之道:5个让代码更优雅的技巧
211 104
|
2月前
|
开发者 Python
Python神技:用列表推导式让你的代码更优雅
Python神技:用列表推导式让你的代码更优雅
397 99
|
1月前
|
缓存 Python
Python装饰器:为你的代码施展“魔法
Python装饰器:为你的代码施展“魔法
145 88
|
1月前
|
监控 机器人 编译器
如何将python代码打包成exe文件---PyInstaller打包之神
PyInstaller可将Python程序打包为独立可执行文件,无需用户安装Python环境。它自动分析代码依赖,整合解释器、库及资源,支持一键生成exe,方便分发。使用pip安装后,通过简单命令即可完成打包,适合各类项目部署。
|
2月前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
371 7
|
2月前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
208 2
|
2月前
|
JSON 缓存 开发者
淘宝商品详情接口(item_get)企业级全解析:参数配置、签名机制与 Python 代码实战
本文详解淘宝开放平台taobao.item_get接口对接全流程,涵盖参数配置、MD5签名生成、Python企业级代码实现及高频问题排查,提供可落地的实战方案,助你高效稳定获取商品数据。

热门文章

最新文章

推荐镜像

更多