Python学习 -- 常用数据交换格式(CSV、XML、JSON)

简介: Python学习 -- 常用数据交换格式(CSV、XML、JSON)

数据交换格式是在不同系统之间交换数据时使用的一种标准化格式。在Python中,我们常用的数据交换格式有CSV、XML和JSON。本篇技术博客将介绍这三种数据交换格式的详细使用方法,并提供具体的代码案例,帮助初学者快速掌握这些格式的使用。

  1. CSV(逗号分隔值)格式 CSV是一种简单的文本文件格式,使用逗号作为字段之间的分隔符。下面是CSV格式的基本使用方法:

代码示例:

import csv
# 写入CSV文件
data = [
    ['Name', 'Age', 'City'],
    ['John', '25', 'New York'],
    ['Alice', '30', 'London'],
    ['Bob', '35', 'Paris']
]
with open('data.csv', 'w', newline='') as file:
    writer = csv.writer(file)
    writer.writerows(data)
# 读取CSV文件
with open('data.csv', 'r') as file:
    reader = csv.reader(file)
    for row in reader:
        print(row)
  1. XML(可扩展标记语言)格式 XML是一种具有自定义标签的文本文件格式,用于存储和传输数据。下面是XML格式的基本使用方法:

代码示例:

import xml.etree.ElementTree as ET
# 创建XML文件
root = ET.Element('root')
employee = ET.SubElement(root, 'employee')
name = ET.SubElement(employee, 'name')
age = ET.SubElement(employee, 'age')
city = ET.SubElement(employee, 'city')
name.text = 'John'
age.text = '25'
city.text = 'New York'
tree = ET.ElementTree(root)
tree.write('data.xml')
# 解析XML文件
tree = ET.parse('data.xml')
root = tree.getroot()
for employee in root.findall('employee'):
    name = employee.find('name').text
    age = employee.find('age').text
    city = employee.find('city').text
    print(name, age, city)
  1. JSON(JavaScript对象表示法)格式 JSON是一种轻量级的数据交换格式,以键值对的形式组织数据。下面是JSON格式的基本使用方法:

代码示例:

import json
# 创建JSON文件
data = {
    'employee': {
        'name': 'John',
        'age': 25,
        'city': 'New York'
    }
}
with open('data.json', 'w') as file:
    json.dump(data, file)
# 解析JSON文件
with open('data.json') as file:
    data = json.load(file)
name = data['employee']['name']
age = data['employee']['age']
city = data['employee']['city']
print(name, age, city)

总结:在本篇技术博客中,我们介绍了Python中常用的数据交换格式:CSV、XML和JSON。针对每种格式,我们提供了详细的使用方法和具体的代码案例。通过学习这些数据交换格式的使用,我们可以在不同系统之间方便地交换和处理数据。无论是简单的逗号分隔值、具有自定义标签的XML文件,还是轻量级的JSON格式,都能够满足不同的数据交换需求。通过多练习和实践,我们可以更加熟练地使用这些数据交换格式,提高我们数据处理和交互的效率。


目录
相关文章
|
2月前
|
XML Java 数据格式
使用idea中的Live Templates自定义自动生成Spring所需的XML配置文件格式
本文介绍了在使用Spring框架时,如何通过创建`applicationContext.xml`配置文件来管理对象。首先,在resources目录下新建XML配置文件,并通过IDEA自动生成部分配置。为完善配置,特别是添加AOP支持,可以通过IDEA的Live Templates功能自定义XML模板。具体步骤包括:连续按两次Shift搜索Live Templates,配置模板内容,输入特定前缀(如spring)并按Tab键即可快速生成完整的Spring配置文件。这样可以大大提高开发效率,减少重复工作。
使用idea中的Live Templates自定义自动生成Spring所需的XML配置文件格式
|
3月前
|
XML JSON API
如何使用Python将字典转换为XML
本文介绍了如何使用Python中的`xml.etree.ElementTree`库将字典数据结构转换为XML格式。通过定义递归函数处理字典到XML元素的转换,生成符合标准的XML文档,适用于与旧系统交互或需支持复杂文档结构的场景。示例代码展示了将一个简单字典转换为XML的具体实现过程。
31 1
|
3月前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
4月前
|
JSON 数据格式 Python
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
这篇文章介绍了一个Python脚本,用于统计TXT或JSON文件中特定单词的出现次数。它包含两个函数,分别处理文本和JSON文件,并通过命令行参数接收文件路径、目标单词和文件格式。文章还提供了代码逻辑的解释和示例用法。
71 0
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
|
4月前
|
存储 Python
Python:利用XML-RPC实现简单的远端过程调用
Python:利用XML-RPC实现简单的远端过程调用
26 1
|
4月前
|
JSON 数据格式 Python
Python编程:利用JSON模块编程验证用户
Python编程:利用JSON模块编程验证用户
40 1
|
4月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
107 0
|
4月前
|
XML Web App开发 数据格式
HTML 页面显示 XML 数据
10月更文挑战第2天
|
4月前
|
XML JSON 前端开发
C#使用HttpClient四种请求数据格式:json、表单数据、文件上传、xml格式
C#使用HttpClient四种请求数据格式:json、表单数据、文件上传、xml格式
930 0
|
4月前
|
存储 JSON 数据格式
Python 输入输出与文件处理: io、pickle、json、csv、os.path 模块详解
Python 输入输出与文件处理: io、pickle、json、csv、os.path 模块详解
60 0

热门文章

最新文章

推荐镜像

更多