python可视化界面调用了某函数导致进程阻塞解决办法

简介: python可视化界面调用了某函数导致进程阻塞解决办法

在Python Tkinter中,如果在主线程中调用耗时的函数,会导致界面卡死,无法响应用户的操作。为了解决这个问题,可以使用多线程或协程来异步执行耗时的函数,使得界面可以保持响应。

为解决前:

导入数据后,点击开始陷入循环必须等for循环结束否则一直等待响应

加了线程池解决后:

任意移动,数据只有在控制台可以看得到,这里没做插入

解决方法:

import threading
import time
import tkinter as tk
def long_running_function():
    # 耗时的操作
    for i in range(6000):
        print(i)
        time.sleep(3)
def run_long_running_function():
    t = threading.Thread(target=long_running_function)
    t.start()
root = tk.Tk()
button = tk.Button(root, text="Run Long Running Function", command=run_long_running_function)
button.pack()
root.mainloop()
相关文章
|
6天前
|
调度 iOS开发 MacOS
python多进程一文够了!!!
本文介绍了高效编程中的多任务原理及其在Python中的实现。主要内容包括多任务的概念、单核和多核CPU的多任务实现、并发与并行的区别、多任务的实现方式(多进程、多线程、协程等)。详细讲解了进程的概念、使用方法、全局变量在多个子进程中的共享问题、启动大量子进程的方法、进程间通信(队列、字典、列表共享)、生产者消费者模型的实现,以及一个实际案例——抓取斗图网站的图片。通过这些内容,读者可以深入理解多任务编程的原理和实践技巧。
22 1
|
13天前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
91 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
26天前
|
数据挖掘 程序员 调度
探索Python的并发编程:线程与进程的实战应用
【10月更文挑战第4天】 本文深入探讨了Python中实现并发编程的两种主要方式——线程和进程,通过对比分析它们的特点、适用场景以及在实际编程中的应用,为读者提供清晰的指导。同时,文章还介绍了一些高级并发模型如协程,并给出了性能优化的建议。
25 3
|
29天前
|
数据可视化 测试技术 Linux
基于Python后端构建多种不同的系统终端界面研究
【10月更文挑战第10天】本研究探讨了利用 Python 后端技术构建多样化系统终端界面的方法,涵盖命令行界面(CLI)、图形用户界面(GUI)及 Web 界面。通过分析各种界面的特点、适用场景及关键技术,展示了如何使用 Python 标准库和第三方库(如 `argparse`、`click`、`Tkinter` 和 `PyQt`)实现高效、灵活的界面设计。旨在提升用户体验并满足不同应用场景的需求。
|
2月前
|
负载均衡 Java 调度
探索Python的并发编程:线程与进程的比较与应用
本文旨在深入探讨Python中的并发编程,重点比较线程与进程的异同、适用场景及实现方法。通过分析GIL对线程并发的影响,以及进程间通信的成本,我们将揭示何时选择线程或进程更为合理。同时,文章将提供实用的代码示例,帮助读者更好地理解并运用这些概念,以提升多任务处理的效率和性能。
55 3
|
23天前
|
存储 Python
Python中的多进程通信实践指南
Python中的多进程通信实践指南
14 0
|
30天前
|
Python
告别阻塞,拥抱未来!Python 异步编程 asyncio 库实战指南!
高效处理并发任务对提升程序性能至关重要,Python 的 `asyncio` 库提供了强大的异步编程支持。通过 `async/await` 关键字,可以在等待操作完成时不阻塞程序执行,显著提高效率和响应性。`asyncio` 支持定义异步函数、创建任务、等待多个任务完成等功能,并能结合第三方库如 `aiohttp` 实现异步网络请求。此外,它还支持异常处理,确保异步代码的健壮性。借助 `asyncio`,您可以轻松构建高性能、响应迅速的应用程序。
37 0
|
1月前
|
数据采集 消息中间件 Python
Python爬虫-进程间通信
Python爬虫-进程间通信
|
2月前
|
监控 Ubuntu API
Python脚本监控Ubuntu系统进程内存的实现方式
通过这种方法,我们可以很容易地监控Ubuntu系统中进程的内存使用情况,对于性能分析和资源管理具有很大的帮助。这只是 `psutil`库功能的冰山一角,`psutil`还能够提供更多关于系统和进程的详细信息,强烈推荐进一步探索这个强大的库。
40 1