手把手:用Python搭建机器学习模型预测黄金价格

简介:

自古以来,黄金一直作为货币而存在,就是在今天,黄金也具有非常高的储藏价值,那么有没有可能预测出黄金价格的变化趋势呢?

答案是肯定的,让我们使用机器学习中的回归算法来预测世界上贵重金属之一,黄金的价格吧。

我们将建立一个机器学习线性回归模型,它将从黄金ETF (GLD)的历史价格中获取信息,并返回黄金ETF价格在第二天的预测值。

GLD 是最大的以黄金进行直接投资的ETF交易基金。

详见:http://www.etf.com/GLD

在python的开发环境下用机器学习预测黄金价格的步骤:

  • 导入Python库并读取黄金ETF 的数据
  • 定义解释变量
  • 将数据切分为模型训练数据集和测试数据集
  • 建立线性回归模型
  • 预测黄金ETF的价格

导入Python库并读取黄金 ETF 的数据

首先:导入实现此策略所需的所有必要的库(LinearRegression,pandas,numpy,matplotlib,seaborn和fix_yahoo_finance)

# LinearRegression is a machine learning library for linear regression

from sklearn.linear_model import LinearRegression 

# pandas and numpy are used for data manipulation 

import pandas as pd 

import numpy as np 

# matplotlib and seaborn are used for plotting graphs 

import matplotlib.pyplot as plt 

import seaborn 

# fix_yahoo_finance is used to fetch data import fix_yahoo_finance as yf

然后我们读取过去10年间每天黄金ETF的价格数据,并将数据储存在Df中。我们移除那些不相关的变量并使用dropna函数删除NaN值。然后我们绘制出黄金ETF的收盘价格。

# Read data 

Df = yf.download('GLD','2008-01-01','2017-12-31')

# Only keep close columns 

Df=Df[['Close']] 

# Drop rows with missing values 

Df= Df.dropna() 

# Plot the closing price of GLD 

Df.Close.plot(figsize=(10,5)) 

plt.ylabel("Gold ETF Prices")

plt.show()

输出

3b71ae1bff8a7993b5517ac310b1f0562bd7151b

定义解释变量

解释变量是被用来决定第二天黄金ETF价格数值的变量。简单地说,就是我们用来预测黄金ETF价格的特征值。本例中的解释变量是过去3天和9天的价格移动平均值。我们使用dropna()函数删除NaN值,并将特征变量存于X中。

然而,你还可以在X中放入更多你认为对于预测黄金ETF价格有用的变量。这些变量可以是技术指标,也可以是另一种ETF的价格(如黄金矿工ETF (简称GDX)或石油ETF(简称USO))或美国经济数据。

Df['S_3'] = Df['Close'].shift(1).rolling(window=3).mean() 

Df['S_9']= Df['Close'].shift(1).rolling(window=9).mean() 

Df= Df.dropna() 

X = Df[['S_3','S_9']] 

X.head()

输出

26cee3f9195361d773f47112adb32d51942e1427

定义因变量

同样,因变量是取决于解释变量的“被解释变量”。简单地说,在这里就是我们试图预测的黄金ETF价格。我们将黄金ETF的价格赋值为y。

y = Df['Close']

y.head()

输出

将数据切分为模型训练数据集和测试数据集

在此步骤中,我们将预测变量(解释变量)数据和输出(因变量)数据拆分为训练数据集和测试数据集。训练数据用于建立线性回归模型,将输入与预期输出配对。测试数据用于评估模型的训练效果。

851bf1a8c7a4db3bc4fc7eca04ab056e4b96c2ef

  • 前80%的数据用于训练模型,其余的数据用来测试模型。
  • X_train 和y_train是训练数据集。
  • X_test & y_test是测试数据集。
t=.8 

t = int(t*len(Df)) 

# Train dataset 

X_train = X[:t] 

y_train = y[:t]  

# Test dataset 

X_test = X[t:] 

y_test = y[t:]
建立线性回归模型

接下来我们将建立一个线性回归模型。什么是线性回归呢?

如果我们试图捕捉可以最优解释Y观测值的X变量和Y变量之间的数学关系,我们将在X的观测值形成的散点图中去拟合一条线,那么这条线,也就是x和y之间的方程就被称为线性回归分析。

b148a1724d2d41c9748d0c24368241e9becaa4c4

再进一步地说,回归解释了因变量在自变量上的变化。因变量y是你想要预测的变量。自变量x是用来预测因变量的解释变量。下面的回归方程描述了这种关系:

Y = m1 * X1 + m2 * X2 + CGold ETF price = m1 * 3 days moving average + m2 * 15 days moving average + c

然后我们利用拟合方法来拟合自变量和因变量(x和y),从而生成系数和回归常数。

linear = LinearRegression().fit(X_train,y_train) 

print "Gold ETF Price =", round(linear.coef_[0],2), \ 

"* 3 Days Moving Average", round(linear.coef_[1],2), \ 

"* 9 Days Moving Average +", round(linear.intercept_,2)

输出

黄金ETF价格=1.2×3天的移动平均价-0.2×9天的移动平均价+0.39

预测黄金ETF的价格

现在,是时候检查模型是否在测试数据集中有效了。我们使用由训练数据集建立的线性模型来预测黄金ETF的价格。预测模型可以得到给定解释变量X后相应的黄金ETF价格(y)。

predicted_price = linear.predict(X_test)  

predicted_price = pd.DataFrame(predicted_price,index=y_test.index,columns = ['price'])  

predicted_price.plot(figsize=(10,5))  

y_test.plot()  

plt.legend(['predicted_price','actual_price'])  

plt.ylabel("Gold ETF Price")  

plt.show()

输出

29ed1336d864eb6726cdac171696630fa176f94b

图表显示了黄金ETF价格的预测值和实际值(蓝线是预测值,绿线是实际值)。

现在,让我们使用score()函数来计算模型的拟合优度。

r2_score = linear.score(X[t:],y[t:])*100  

float("{0:.2f}".format(r2_score))

可以看出,模型的R²是95.81%。R²总是在0到100%之间。接近100%的分数表明该模型能很好地解释黄金ETF的价格。

祝贺你,你刚刚学会了一种基本而又强大的机器学习技巧。


原文发布时间为:2018-02-16

本文作者:文摘菌

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“大数据文摘”微信公众号

相关文章
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
154 70
|
3月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品库存管理的深度学习模型
使用Python实现智能食品库存管理的深度学习模型
256 63
|
25天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
219 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
3月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
153 3
|
3月前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
124 3
|
2月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
193 73
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
177 68
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
152 36
|
2月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
96 21
|
2月前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
112 23

热门文章

最新文章